Question

In: Statistics and Probability

Let A and B be two events. Find the largest and smallest possible values P(A U...

Let A and B be two events. Find the largest and smallest possible values P(A U B) can take in terms of P(A) and P(B) and give examples in which these values can be attained.

Solutions

Expert Solution

From Set Theory we know

For P(AUB) to be the largest

So that P(AUB)= P(A) +P (B)

As there is no intersection between the sets P(AUB)= P(A)+P(B0

For example if P(A)=0.6 and P(B)=0.4 and then P(AUB)=1which is the maximum value for probability of an event

For P(AUB) to be smallest

If P(A) > P(B)

then

and P(AUB)=P(B)

For example

If P(A)=0.6 and P(B)=0.4 and

Then P(AUB)= 0.6+0.4-0.6=0.4 this will be the smallest value


Related Solutions

Let A and B be two events in a sample with P(A)=0.4 and P(AuB)=0.7.Let P(B)=p a)i...
Let A and B be two events in a sample with P(A)=0.4 and P(AuB)=0.7.Let P(B)=p a)i For what value of p are A and B mutually exclusive? ii for what value of p are A and B independent? b) Assume that P(A)=0.4 and P(B)=0.3 i find P(B') ii if A and B are mutually exclusive , what is P(A or B) ii given that P(A or B)=0.6, Find the P(B/A) c) suppose events A and B are such that P(A)=0.25,P(B)...
Let A and B be two events in a sample space S. If P(A1Bc) =.10, P(Ac1B)...
Let A and B be two events in a sample space S. If P(A1Bc) =.10, P(Ac1B) =.40 and P(Ac1Bc) =.10, a. Illustrate the events A1Bc, Ac1B and Ac1Bc on a van Venn-diagram b. Check for the independence of events A and B. c. Find P(A1B*AUB).
Let A and B be events with P(A) = 0.5, P(Bc ) = 0.4, P(Ac ∩...
Let A and B be events with P(A) = 0.5, P(Bc ) = 0.4, P(Ac ∩ Bc ) = 0.3. (a) Calculate P(A ∪ B), P(A ∩ B), P(B|(A ∪ B)), and P(Ac |B). b) Are A and B independent? Explain why.
Suppose U is uniform on (0,1). Let Y = U(1 − U). (a) Find P(Y >...
Suppose U is uniform on (0,1). Let Y = U(1 − U). (a) Find P(Y > y) for 0 < y < 1/4. (b) differentiate to get the density function of Y . (c) Find an increasing function g(u) so that g(U ) has the same distribution as U (1 − U ).
Write two algorithms to find both the smallest and largest numbers in a list of n...
Write two algorithms to find both the smallest and largest numbers in a list of n numbers. In first algorithm, you simply write one loop to find the minimum and maximum. So there will be 2(n - 1) comparisons. In second algorithm, you try to find a method that does at most 1.5n comparisons of array items. Determine the largest list size (i.e., n) that Algorithm 1 can process and still compute the answer within 60 seconds. Report how long...
A) If two events A and B are​ __________, then​ P(A and ​B)=​P(A)​P(B). complements independent simple...
A) If two events A and B are​ __________, then​ P(A and ​B)=​P(A)​P(B). complements independent simple events mutually exclusive B) The sum of the probabilities of a discrete probability distribution must be​ _______. less than or equal to zero equal to one between zero and one greater than one C) Which of the below is not a requirement for binomial​ experiment? The probability of success is fixed for each trial of the experiment. The trials are mutually exclusive. For each...
On the overlap of two events, suppose two events A and B , P(A)=1/2, P(B)=2/3, but...
On the overlap of two events, suppose two events A and B , P(A)=1/2, P(B)=2/3, but we have no more information about the event, what are the maximum and minimum possible values of P(A/B)
True or False? For any two events A and B, P(A∩ B) ≥ 1 − P(A∪...
True or False? For any two events A and B, P(A∩ B) ≥ 1 − P(A∪ B) True or False? For any two independent events A and B, P(A| B) = P(A| Bc ) Compute B(6, .2, 2)
Q. Let A, B independent events, with P(A) = 1/2 and P(B) = 2/3. Now C...
Q. Let A, B independent events, with P(A) = 1/2 and P(B) = 2/3. Now C be an event with P(C) = 1/4, and suppose that P(A|C) = 1/3, P(B|?̅) =7/9, P(A∩B|?̅) = 7/18. (a) Calculate the P(A∩B) (b) Calculate the P(A|?̅) and P(B|C) (c) Calculate the P(A∩B|C) (d) Show if P(A∩B|C) equals P(A|C)P(B|C) or not.
Let u be a unit vector, and P = Identity vector − u⊗u. Compute P^2 and...
Let u be a unit vector, and P = Identity vector − u⊗u. Compute P^2 and P^(−1). Hint: Rank one Matrix.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT