In: Physics
Using an Aging Schedule to Account for Bad Debts
Sparkle Jewels distributes fine stones. It sells on credit to retail jewelry stores and extends terms that require the stores to pay in 60 days. For accounts that are not overdue, Sparkle has found that there is a 90% probability of collection. For accounts up to one month past due, the likelihood of collection decreases to 75%. If accounts are between one and two months past due, the probability of collection is 60%, and if an account is over two months past due, Sparkle Jewels estimates only a 40% chance of collecting the receivable.
On December 31, 2016, the credit balance in Allowance for Doubtful Accounts is $11,500. The amounts of gross receivables by age on this date are as follows:
| Category | Amount |
| Current | $195,000 |
| Past due: | |
| Less than one month | 44,300 |
| One to two months | 24,800 |
| Over two months | 1,400 |
Required:
1. Prepare a schedule to estimate the amount of uncollectible accounts at December 31, 2016.
| Sparkle Jewels | |||
| Aging Schedule to Account for Bad Debts | |||
| Category | Amount | Estimated Percent Uncollectible | Estimated Amount Uncollectible |
| Current | $195,000 | ||
| Past due: | |||
| Less than one month | 44,300 | ||
| One to two months | 24,800 | ||
| Over two months | 1,400 | ||
| Totals | $265,500 | ||
2. On the basis of the schedule in part (1), prepare the journal entry on December 31, 2016, to estimate bad debts. Indicate the effect on financial statement items by selecting "–" for decrease (or negative effect), "+" for increase (or positive effect) and "NE" for No Entry (or no effect) on the financial statement.
| Journal | Balance Sheet | Income Statement | |||||||||||||
| Stockholders’ | Net | ||||||||||||||
| Date | Description | Debit | Credit | Assets | = | Liabilities | + | Equity | Revenues | – | Expenses | = | Income | ||
| 2016 | |||||||||||||||
| Dec. 31 | |||||||||||||||
3. Show how accounts receivable would be presented on the December 31, 2016, balance sheet.
| Sparkle Jewels | ||
| Partial Balance Sheet | ||
| Current Assets | ||
In: Accounting
QUESTION 1
Which of the following would probably be a normal distribution with a positive skew? Check all that apply.
|
Housing prices |
||
|
Visits to the dentist in the past year |
||
|
Height |
||
|
Cigarettes smoked per day (in a county where most people don't smoke) |
20 points
QUESTION 2
What portion of a standard normal distribution is less than 1.5 standard deviations above the mean? (Express your answer as a number between zero and one, rounded to four decimal places.)
10 points
QUESTION 3
What portion of a standard normal distribution is less than 1.5 standard deviations above the mean andmore than 1.5 standard deviations below the mean? (Express your answer as a number between zero and one, rounded to four decimal places.)
10 points
QUESTION 4
Carla's company makes water heaters. These heaters last an average of 60 months, with a standard deviation of 8 months, before needing to be serviced. Her accountants estimate that the company can afford to replace 10% of all water heaters and still make a tidy profit.
Rounding to the nearest whole number, how many months should the warranty be?
20 points
QUESTION 5
If the margin of error for a confidence interval is 50 and the sample average is 160, what is the lower bound of the confidence interval?
5 points
QUESTION 6
If the margin of error for a confidence interval is 50 and the sample average is 160, what is the upper bound of the confidence interval?
5 points
QUESTION 7
Suppose you're estimating how much cloth you'll need to make a costume. If the margin of error of your confidence interval is 0.8 yards, what's the range of your confidence interval?
10 points
QUESTION 8
Suppose you want to estimate the sales per customer for the next holiday season. Based on past seasons, the population standard deviation is $60. Based on a survey sample of 36 people, you estimate this season each customer will spend an average of $900. At 95% confidence, what is the margin of error? Do not include a dollar sign ($) in your answer.
In: Statistics and Probability
1.
Suppose that over the last twenty-five years a country's nominal GDP grew to three times its former size. In the meantime, population grew by 40 percent and prices rose by 100 percent. What happened to real GDP per person?
a. It more than doubled.
b. It increased, but it less than doubled.
c. it was unchanged.
d. It decreased.
the answer is b
2.
Suppose an increase in the price of rubber coincides with an advance in the technology of tire production. As a result of these two events, the demand for tires
a. decreases, and the supply of tires increases.
b. is unaffected, and the supply of tires decreases.
c. is unaffected, and the supply of tires increases.
d. None of the above is necessarily correct.
the answer is D
3.
Suppose that there are diminishing returns to capital. Suppose also that two countries are the same except one has less capital and so less real GDP per person. Suppose that both increase their saving rate from 3 percent to 4 percent. In the long run
a. both countries will have permanently higher growth rates of real GDP per person, and the growth
rate will be higher in the country with more capital.
b. both countries will have permanently higher growth rates of real GDP per person, and the growth
rate will be higher in the country with less capital.
c. both countries will have higher levels of real GDP per person, and the temporary increase in
growth in the level of real GDP per person will have been greater in the country with more capital.
d. both countries will have higher levels of real GDP per person, and the temporary increase in
growth in the level of real GDP per person will have been greater in the country with less capital.
the answer is D
4.
An economy’s production function has the constant-returns-to-scale property. If the economy’s labor force doubled and all other inputs stayed the same, then real GDP would
a. stay the same.
b. increase by exactly 50 percent.
c. increase by exactly 100 percent.
d. increase, but not necessarily by either 50 percent or 100 percent.
the answer is D
I know all the answers to these questions but dont know the process. Could you tell me how to do it please. thanks!
Also, can you tell me the relationship between GDP with population and labor foce and what is real GDP per person.
thanks!!
In: Economics
C++ CODE ONLY
Using the following code.
#include <iostream>
#include <string>
#include <climits>
#include <algorithm>
using namespace std;
// M x N matrix
#define M 5
#define N 5
// Naive recursive function to find the minimum cost to
reach
// cell (m, n) from cell (0, 0)
int findMinCost(int cost[M][N], int m, int n)
{
// base case
if (n == 0 || m == 0)
return INT_MAX;
// if we're at first cell (0, 0)
if (m == 1 && n == 1)
return cost[0][0];
// include cost of the current cell in path and
recur to find minimum
// of the path from adjacent left cell and adjacent
top cell.
return min (findMinCost(cost, m - 1, n),
findMinCost(cost, m, n - 1))
+ cost[m - 1][n - 1];
}
int main()
{
int cost[M][N] =
{
{ 4, 7, 8, 6, 4 },
{ 6, 7, 3, 9, 2 },
{ 3, 8, 1, 2, 4 },
{ 7, 1, 7, 3, 7 },
{ 2, 9, 8, 9, 3 }
};
cout << "The minimum cost is " << findMinCost(cost, M, N);
return 0;
}
Answer the following questions:
Given a M x N matrix where each cell has a cost associated with it, find the minimum cost to reach last cell (0,0) of the matrix from its first cell (M,N). We can only move one unit right or one unit down from any cell. i.e. from cell (I,j), we can move to (i, j-1) or (i-1,j).
Example output:
Minimum cost is 34.
In: Computer Science
Male students at SCC last semester. You will use this data throughout the semester on your lab assignments.
Student # Gender Height Shoe Age Hand
1 M 67 10 19 R
2 M 74 12 17 R
3 M 72 11.5 19 R
4 M 69 10 35 R
5 M 66 9 18 R
6 M 71 10.5 17 R
7 M 72 10.5 17 R
8 M 66 10 20 R
9 M 67 10 18 R
10 M 71 10.5 24 R
11 M 66 10 21 R
12 M 71 10.5 18 R
13 M 69 10 22 R
14 M 66 9.5 18 L
15 M 76 14 18 R
16 M 69 11 22 R
17 M 68 9 19 R
18 M 70 12 30 R
19 M 67 10 24 R
20 M 70 11 21 R
21 M 70 10 52 R
22 M 63 9 27 R
23 M 69 11 22 R
24 M 72 10 22 R
25 M 76 11.5 20 L
26 M 75 11 17 R
27 M 72 11 50 L
28 M 69 11 20 R
29 M 70 12 20 R
30 M 69 11.5 23 R
31 M 70 11 18 R
32 M 67 10 21 R
33 M 68 11 44 R
34 M 76 13 48 R
35 M 62 8 23 L
36 M 69 9 19 R
37 M 72 10 60 R
38 M 73 11.5 41 R
39 M 70 9.5 39 R
40 M 78 15 24 R
41 M 65 8.5 23 R
42 M 68 9.5 20 R
2. Using the SCC men’s/women’s class sample data at the ?=0.05, is there enough evidence to conclude that there is a significant linear correlation between men’s/women’s height and men’s/women’s shoe size?
a. State the null and alternate hypotheses.
b. Specify the level of significance.
c. State the correlation coefficient. (3 decimal places)
d. State the critical value from Table 11. (Use the value of n that is closest to your sample size.)
e. State whether to “reject the ?0” or “fail to reject the ?0”.
f. Interpret the decision in the context of the original claim.
In: Statistics and Probability
In all cases we have an array of int or char of some fixed size. The program will prompt the user to enter some values, such as:
Enter 7 integers to be stored in the array: 5 13 8 5 1
2
The questions that could then be asked of this data might be:
Similarly we might prompt for character input:
Enter 7 characters to be stored in the array:
azaleas
The questions that could then be asked of this data might be:
Your code to do the task will need to be in a function.
In: Computer Science
For six of the following, identify the author and write five carefully chosen sentences on the meaning of the quotation.
7. “Then there is the ‘old lady effect.’ Consider the case of a two-parent, four-child family that has occupied a ten-room rental dwelling. One by one the children grow up, marry, and move elsewhere. The husband dies. Now the lady is left with a gigantic apartment.” --- Walter Block
In: Economics
Describe a confidence interval for the difference in means between two population by stating 1. a pair of populations composed of the same type of individuals and a quantitative variable on those populations, 2. sizes and degrees of freedom of samples from those populations, 3. the means of those samples, and 4. the standard deviations of those samples. Then state 5. a confidence level and find 6. find the interval. Finally, perform a test of significance concerning the difference in the means of the populations by stating 7. both a null and an alternative hypothesis and 8. an α-level, then finding 9. the two-sample t-statistic and either 10. rejecting or failing to reject the null hypothesis. Remember that you do not need to list the values of the variable for individuals in either the sample or the population, and that the values for 2, 3, 4, 5, and 8 do not need to be calculated, only stated.
CAN IT PLEASE BE CLEAR AND LEGIBLE THANK YOU.
In: Statistics and Probability
GAME THEORY: Please show all work and explanation so i understand.
Two firms, A and B, compete by each choosing a price. Demand for good Q is Q = 13 – P, where P denotes price. If one firm offers a lower price than the other firm, the firm with the lower price meets the entire demand at his price. If the two firms set the same price, then they equally split demand at that price. Consider prices P = 4, 8 & 10. Use revenues for the firms’ payoffs. There are no costs!
(a.) Draw the normal form game.
(b.) If firm B chooses PB = 8, what are the three possible payoffs he can earn?
(c.) If firm B chooses PB = 8, which price choice for A would give her the highest payoff?
In: Economics