Questions
Dataset #2 – Star War Film Data Description: Weekly domestic box office revenues for the 8...

Dataset #2 – Star War Film Data

Description: Weekly domestic box office revenues for the 8 Star War films

Research ‘Question’: Find a ‘best’ linear model to predict Star War revenue/day using the number of theaters, number of weeks since release, film number, and release year.

theaters weeknum film year revperday
3672 1 IV 1977 18498679.7
3672 2 IV 1977 9505314.86
3672 3 IV 1977 4127697.71
3672 4 IV 1977 2632591
3422 5 IV 1977 1950438.14
3311 6 IV 1977 2521766.29
3186 7 IV 1977 2831227.86
2681 8 IV 1977 1023363.71
2170 9 IV 1977 652710.714
1851 10 IV 1977 566439
1202 11 IV 1977 250623.714
907 12 IV 1977 179533.714
505 13 IV 1977 102494.857
311 14 IV 1977 74403.1429
206 15 IV 1977 44651.5714
215 16 IV 1977 46953.5714
228 17 IV 1977 54924.2857
172 18 IV 1977 29591.1429
291 19 IV 1977 76476.1429
270 20 IV 1977 59581
160 21 IV 1977 41030.1429
111 22 IV 1977 28579.4286
57 23 IV 1977 22707.5714
43 24 IV 1977 17242.4286
40 25 IV 1977 11668.7143
30 26 IV 1977 9229
3682 1 V 1980 15161652.6
3682 2 V 1980 8844278.29
3682 3 V 1980 5120454.57
3387 4 V 1980 1772898.57
3025 5 V 1980 1165040.57
2505 6 V 1980 1340427.71
2505 7 V 1980 1944470
2015 8 V 1980 799467
1550 9 V 1980 421755.857
1077 10 V 1980 303789.143
783 11 V 1980 142854.857
502 12 V 1980 85785.1429
352 13 V 1980 52545.1429
441 14 V 1980 70452.4286
388 15 V 1980 45788.2857
388 16 V 1980 41332.7143
360 17 V 1980 39414.5714
205 18 V 1980 24388.8571
151 19 V 1980 17734.5714
95 20 V 1980 14462.7143
80 21 V 1980 12256.4286
72 22 V 1980 4412
15 23 V 1980 786.285714
7 24 V 1980 455.285714
3855 1 VI 1983 17580664.1
3855 2 VI 1983 7119019.71
3805 3 VI 1983 3913192.71
3004 4 VI 1983 2412629
2725 5 VI 1983 1652119.43
2002 6 VI 1983 977608.429
1460 7 VI 1983 643752.429
1008 8 VI 1983 404027.429
605 9 VI 1983 240410.429
409 10 VI 1983 169831.286
310 11 VI 1983 107789.429
248 12 VI 1983 80801.4286
391 13 VI 1983 95609.8571
391 14 VI 1983 90454.4286
321 15 VI 1983 38485
228 16 VI 1983 29893
246 17 VI 1983 25054
164 18 VI 1983 11661.4286
119 19 VI 1983 9036
74 20 VI 1983 8862.57143
55 21 VI 1983 7250
55 22 VI 1983 5731.71429
3858 1 I 1999 20897581.3
3858 2 I 1999 9015073
3858 3 I 1999 3487897.43
3325 4 I 1999 1834563.57
2750 5 I 1999 1438515.14
2424 6 I 1999 1818900.29
2316 7 I 1999 1315771.29
1555 8 I 1999 510037.571
1003 9 I 1999 345916.714
560 10 I 1999 159016.429
340 11 I 1999 96117.5714
245 12 I 1999 69097
160 13 I 1999 49419.4286
441 14 I 1999 136217
422 15 I 1999 93123.1429
331 16 I 1999 57197.7143
231 17 I 1999 39329.1429
191 18 I 1999 29226.5714
140 19 I 1999 22458.7143
89 20 I 1999 14974.7143
4285 1 II 2002 19483946.1
4285 2 II 2002 7050087.71
4005 3 II 2002 3828435.43
3125 4 II 2002 2158583
2585 5 II 2002 1212925.71
1955 6 II 2002 817540.571
1322 7 II 2002 488799.571
1017 8 II 2002 417103.143
775 9 II 2002 193287.571
589 10 II 2002 143490.429
320 11 II 2002 59758.8571
241 12 II 2002 41315.4286
408 13 II 2002 74103.8571
377 14 II 2002 54086.4286
283 15 II 2002 38864.1429
225 16 II 2002 27574.1429
159 17 II 2002 18940
105 18 II 2002 14270.4286
90 19 II 2002 9984.85714
56 20 II 2002 8214.28571
52 21 II 2002 4788.28571
38 22 II 2002 2020.85714
4325 1 III 2005 21314847.9
4455 2 III 2005 6561318.43
4393 3 III 2005 3879632
3455 4 III 2005 1973952.71
2771 5 III 2005 1146060.29
1936 6 III 2005 718753.857
1508 7 III 2005 474352.286
1091 8 III 2005 403442.857
744 9 III 2005 173298.571
415 10 III 2005 78098.7143
301 11 III 2005 51525.8571
190 12 III 2005 33442.8571
505 13 III 2005 84180.1429
356 14 III 2005 51179.8571
245 15 III 2005 33814.8571
201 16 III 2005 21102
135 17 III 2005 17775.7143
95 18 III 2005 11938.8571
44 19 III 2005 7837.85714
44 20 III 2005 6345.28571
36 21 III 2005 3118.28571
23 22 III 2005 1052.42857
4125 1 VII 2015 24281289.7
4125 2 VII 2015 8218801.86
4125 3 VII 2015 3098252
3577 4 VII 2015 1644693.14
1840 5 VII 2015 1302432.86
1732 6 VII 2015 1294747
1732 7 VII 2015 918122.286
1507 8 VII 2015 442270.857
941 9 VII 2015 291175.571
725 10 VII 2015 168580.857
465 11 VII 2015 109324.714
365 12 VII 2015 71774.2857
409 13 VII 2015 93213.2857
321 14 VII 2015 77634.8571
303 15 VII 2015 45363.7143
208 16 VII 2015 30144.8571
122 17 VII 2015 20494.5714
94 18 VII 2015 14027.7143
85 19 VII 2015 12463.4286
66 20 VII 2015 8202.42857
4375 1 VIII 2017 32302438.4
4375 2 VIII 2017 10059634.3
4145 3 VIII 2017 4872357.86
3175 4 VIII 2017 2777846.71
2414 5 VIII 2017 1630078.29
1738 6 VIII 2017 963457.571
1328 7 VIII 2017 558613
1092 8 VIII 2017 564588.286
810 9 VIII 2017 196717.429
601 10 VIII 2017 136677.857
320 11 VIII 2017 76497
252 12 VIII 2017 53219.8571
407 13 VIII 2017 86566.5714
330 14 VIII 2017 57112.1429
240 15 VIII 2017 35131
163 16 VIII 2017 22387.2857
225 17 VIII 2017 21222.2857
85 18 VIII 2017 10420.1429
78 19 VIII 2017 5208.14286

In: Statistics and Probability

“There is no luck. Only good marketing” Please provide your opinion about this statement. Please use...

“There is no luck. Only good marketing” Please provide your opinion about this statement. Please use examples and academic sources to support your discussion. - Discussion in 300 words - Use at least 2 examples to illustrate your discussion - Use at least2 academic sources to support your argument.

In: Operations Management

In May 2004, a Gallup Poll of adults’ attitudes toward Health Maintenance Organization (HMOs) found that...

In May 2004, a Gallup Poll of adults’ attitudes toward Health Maintenance Organization (HMOs) found that 41% of adults had little or no confidence in HMOs, 38% had some confidence, 17% had a great deal or quite a lot of confidence, and 4% had no opinion (USA TODAY, June 22, 2004). Let us denote these outcomes as L, S, G, and N, respectively. A recent random sample of 500 adults yielded the frequency distribution given in the following table.   Response L S G N Frequency 212 198 82 8

a. Determine the rejection region.

b. Using the 2.5% significance level, can you conclude that the current distribution of opinions differs from the distribution of May 2004?

In: Statistics and Probability

1. It has been suggested that global warming may increase the frequency of hurricanes. The table...

1. It has been suggested that global warming may increase the frequency of hurricanes. The table given below shows the number of major Atlantic hurricanes recorded annually before and after 1990.

before 1995 after 1995
year # of storms year # of storms
1976 2 1996 6
1977 1 1997 1
1978 2 1998 3
1979 2 1999 5
1980 2 2000 3
1981 3 2001 4
1982 1 2002 2
1983 1 2003 3
1984 1 2004 6
1985 3 2005 7
1986 0 2006 2
1987 1 2007 2
1988 3 2008 5
1989 2 2009 2
1990 1 2010 5
1991 2 2011 4
1992 1 2012 2
1993 1 2013 0
1994 0 2014 2
1995 5 2015 2

Does this data is sufficient enough to claim that the number of annual hurricanes increased since 1995? Do the test at 8% significance level. To do the test, answer the following: a. Write down the null and alternative hypotheses. b. Get the excel output and answer the following: i. Fill the cell with the p-value of the test with green color ii. Fill the cell with the test statistic of the test with yellow color

In: Statistics and Probability

You have observed the following returns over time: Assume the risk-free rate is 3.55% and the...

You have observed the following returns over time: Assume the risk-free rate is 3.55% and the market risk premium is 4.60%.
Year Stock A Stock B Market INPUT DATA rRF 3.55% Market Risk Premium 4.60%
1997 14.000% 15.000% 13.143% a. What are the betas of Stocks A and B?
1998 11.000% 9.000% 11.029% bA bB
1999 -2.500% 5.000% 4.109%
2000 14.000% 7.500% 5.097% b. What are the required rates of return for Stocks A and B?
2001 20.000% 13.500% 19.926% rA rB
2002 21.500% 14.000% 24.869%
2003 22.400% 13.500% 21.903% c. What is the required rate of return for a portfolio consisting of 40% A and 60% B?
2004 19.900% 14.400% 15.972% INPUT DATA wA 40.00% rp
2005 21.100% 16.700% 13.006%
2006 24.000% 18.800% 18.937% d. Stock A is trading at a price consistent with the security market line. If your analysis suggests that Stock A will provide a return above the SML, does your analysis suggest that Stock A is undervalued or overvalued? Explain.
2007 26.300% 19.700% 16.960%
2008 25.500% 21.100% 17.949%
2009 22.100% 23.400% 19.926%
2010 13.500% 11.500% 18.937%
2011 6.400% 8.800% 10.040%
2012 -1.100% 4.200% -1.823%
2013 -4.000% 5.600% -1.328%
2014 6.500% 6.800% 5.097%
2015 7.400% 8.700% 10.040%
2016 9.900% 9.900% 13.006%

In: Finance

Year Money Supply (M2) Nominal GDP Velocity of Money(ratio) Consumer Price Index 1995 3,492.40 10543.644 2.155...

Year Money Supply (M2) Nominal GDP Velocity of Money(ratio) Consumer Price Index
1995 3,492.40 10543.644 2.155 2.87081
1996 3,647.90 10817.896 2.147 2.79070
1997 3,824.80 11284.587 2.179 3.03814
1998 4,046.30 11832.486 2.175 1.63112
1999 4,393.10 12403.293 2.135 1.66667
2000 4,656.30 12924.179 2.139 2.79296
2001 4,965.00 13222.690 2.090 3.72120
2002 5,440.10 13397.002 1.975 1.19590
2003 5,790.40 13634.253 1.921 2.75746
2004 6,061.10 14221.147 1.954 2.02629
2005 6,410.60 14771.602 1.988 2.84487
2006 6,709.90 15267.026 2.021 4.01879
2007 7,094.80 15493.328 1.997 2.07577
2008 7,491.10 15671.383 1.936 4.29470
2009 8,262.40 15155.940 1.733 -0.11359
2010 8,445.60 15415.145 1.736 2.62111
2011 8,825.80 15712.754 1.723 1.70078
2012 9,730.20 16129.418 1.639 3.00877
2013 10,471.40 16382.964 1.579 1.68406

We had two financial crises since 2000, 2000 dot.com bubble, 2008-2009 financial crisis. From FRED website, find the following data from 1995 to 2013, and make a graph. Explain the general trends of each series, and compare them between the two crises.

  1. Money supply (M2)
  2. Nominal GDP
  3. Velocity of Money
  4. Consumer Price Index

In: Economics

An economist with a major bank wants to learn, quantitatively, how much spending on luxury goods...

An economist with a major bank wants to learn, quantitatively, how much spending on luxury goods and services can be explained based on consumers’ perception about the current state of the economy and what do they expect in the near future (6 months ahead).  Consumers, of all income and wealth classes, were surveyed.  Every year, 1500 consumers were interviewed.  The bank having all of the data from the 1500 consumers interviewed every year, computed the average level of consumer confidence (an index ranging from 0 to 100, 100 being absolutely optimistic) and computed the average dollar amount spent on luxuries annually.  Below is the data shown for the last 24 years.

Date                 X                     Y (in thousands of dollars)

1994                79.1                 55.6

1995                79                    54.8

1996                80.2                 55.4

1997                80.5                 55.9

1998                81.2                 56.4

1999                80.8                 57.3

2000                81.2                 57

2001                80.7                 57.5

2002                80.3                 56.9

2003                79.4                 55.8

2004                78.6                 56.1

2005                78.3                 55.7

2006                78.3                 55.7

2007                77.8                 55

2008                77.7                 54.4

2009                77.6                 54

2010                77.6                 56

2011                78.5                 56.7

2012                78.3                 56.3

2013                78.5                 57.2

2014                78.9                 57.8

2015                79.8                 58.7

2016                80.4                 59.3

2017                80.7                 59.9

Question:

  1. Construct the linear regression model for the dollar amount spent on luxury goods and services.

In: Statistics and Probability

The data below is the total spending (in millions of dollars) on drugs and other non-durable...

The data below is the total spending (in millions of dollars) on drugs and other non-durable products for your assigned state (or DC). You need to convert this data to spending per capita in constant 2019 dollars.

Go to the FRED database at https://fred.stlouisfed.org/

Search for the PCEPI. Change the frequency to annual. Using that price index (this is a national index; there isn't a PCE index for each state), convert the following to 2019Q3 dollars.

Again using the FRED database, find the population for your state. The symbol is usually the two letter abbreviation for the state and POP. New York, for example, would be NYPOP.

Using this information, covert the spending below into spending per capita, in 2019Q3 dollars. Keep in mind that the values below are in millions of dollars and you want your answers in dollars.

Enter your results for every even-numbered year in the answer

Your assigned state:

Alaska

Year Total spending on drugs and other non-durable products (millions of dollars)
1991 142
1992 149
1993 153
1994 162
1995 156
1996 179
1997 209
1998 229
1999 262
2000 290
2001 317
2002 358
2003 411
2004 425
2005 455
2006 499
2007 531
2008 524
2009 503
2010 485
2011 480
2012 468
2013 430
2014 471

In: Economics

The general fund budget (in billions of dollars) for a U.S. state for 1988 (period 1)...

The general fund budget (in billions of dollars) for a U.S. state for 1988 (period 1) to 2011 (period 24) follows.

Year Period Budget
($ billions)
1988 1 3.03
1989 2 3.29
1990 3 3.56
1991 4 4.41
1992 5 4.36
1993 6 4.51
1994 7 4.65
1995 8 5.15
1996 9 5.34
1997 10 5.66
1998 11 6.01
1999 12 6.30
2000 13 6.58
2001 14 6.75
2002 15 6.56
2003 16 6.78
2004 17 6.98
2005 18 7.65
2006 19 8.38
2007 20 8.57
2008 21 8.76
2009 22 8.43
2010 23 8.33
2011 24 8.76

(a)

Construct a time series plot.

What type of pattern exists in the data?

The time series plot shows a horizontal pattern.

The time series plot shows a nonlinear trend.    

The time series plot shows a seasonal pattern.

The time series plot shows a linear trend.

(b)

Develop a linear trend equation for this time series to forecast the budget (in billions of dollars). (Round your numerical values to three decimal places.)

Tt =

(c)

What is the forecast (in billions of dollars) for period 25? (Round your answer to two decimal places.)

$ _______ billion

In: Statistics and Probability

Despite the growth in digital entertainment, the nation’s 400 amusement parks have managed to hold on...

Despite the growth in digital entertainment, the nation’s 400 amusement parks have managed to hold on to visitors. A manager collects data on the number of visitors (in millions) to amusement parks in the United States. A portion of the data is shown in the accompanying table.

B-1) Estimate a linear trend model and an exponential trend model for the sample. (Round your answers to 2 decimal places.)

Variable Linear Trend Exponential Trend
Intercept ? ?
T ? ?
Standard Error ? ?

B-2 Calculate the MSE for both trends. (Do not round estimates or intermediate calculations. Round final answers to 2 decimal places.)

Linear Trend Exponential Trend
MSE ? ?

b-3. By comparing MSE, which of the above methods perform better? Exponential or Linear?

c-1. Using the model of best fit, make a forecast for visitors to amusement parks in 2008. (Do not round estimates or intermediate calculations. Round your answer to 1 decimal place.)

Y Hat or Y^ ? Million Visitors

c-2. Using the model of best fit, make a forecast for visitors to amusement parks in 2009. (Do not round estimates or intermediate calculations. Round your answer to 1 decimal place.)

Y Hat or Y^ ? Million Views
Year Visitors
2000 354
2001 338
2002 336
2003 310
2004 358
2005 375
2006 317
2007 305


In: Statistics and Probability