Questions
The tables show combinations of two goods, steel and cloth, that can be produced in two...

The tables show combinations of two goods, steel and cloth, that can be produced in two nations ABC and RST.

In ABC

Steel
0
10
20
30
40

Cloth
100
75
50
25
0
In RST

Steel
0
20
40
60

Cloth
300
200
100
0
a. Using figures from the table plot each nation’s production possibility curves on the back. Label each of the curves.
b. Which nation has an absolute advantage in the production of cloth?_______ In steel? ______
c. Which nation has a comparative advantage in the production of cloth?______ In steel? ______
d. According to the Law of Comparative Advantage, nation _____ will export cloth and import steel. Nation _____ will export steel and import cloth.

In: Economics

Three couples and two single individuals have been invited to an investment seminar and have agreed...

Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the probability that any particular couple or individual arrives late is 0.39 (a couple will travel together in the same vehicle, so either both people will be on time or else both will arrive late). Assume that different couples and individuals are on time or late independently of one another. Let X = the number of people who arrive late for the seminar.

(a) Determine the probability mass function of X. [Hint: label the three couples #1, #2, and #3 and the two individuals #4 and #5.] (Round your answers to four decimal places.)

x P(X = x)
  0       
  1         
  2         
  3         
  4         
  5         
  6         
  7         
  8         


(b) Obtain the cumulative distribution function of X. (Round your answers to four decimal places.)

x F(x)
  0         
  1         
  2         
  3         
  4         
  5         
  6         
  7         
  8         


Use the cumulative distribution function of X to calculate

P(3 ≤ X ≤ 6).

In: Statistics and Probability

El documento de Excel anexo presenta las estadísticas de criminalidad en una ciudad. También se presentan...

El documento de Excel anexo presenta las estadísticas de criminalidad en una ciudad. También se presentan otros datos importantes a cerca de educación. El propósito de este ejercicio es crear dos modelos de regresión lineal múltiple donde se trate de predecir: a) Y1 usando como predictores X3,X5,X6 b) Y2 usando como predictores X3,X4,X7 En cada caso se necesita: 1. El modelo (todos los coeficientes beta) y la interpretación de cada coeficiente. 2. Cuan significativos son cada uno de los coeficientes 3. El coeficiente de determinación del modelo (R cuadrado) 4. La interpretación de R cuadrado 5. En el caso (a) prediga: Cuál será la tasa de crímenes totales reportados por milón de habitantes si se asignan 50 dólares anuales por habitante a la policía, hay un 10% de jóvenes entre 16 y 19 años que no asisten a la escuela superior (ni la han finalizado) y hay un 50% de jóvenes entre 18 y 24 años que asisten a la universidad. 6. En el caso (b) prediga: Cuántos crímenes de violencia se reportarán si se asignan 20 dólares anuales por habitante a la policía, hay 60% de personas de más de 25 años que finalizaron la escuela superior y hay un 5% de personas de 25 años o más que lograron una carrera universitaria de 4 años. 7. Luego de hacer todo este análisis arroje conclusiones prácticas acerca de los hallazgos hechos en esta ciudad. 8. Si usted es un consejero para las autoridades de esa ciudad, por favor escriba un parrafo de recomendaciones a seguir para tratar de reducir la criminalidad. ABAJO APARECEN CIERTAS FÓRMULAS QUE LE PUEDE SER DE UTILIDAD, AUNQUE LA RECOMENDACIÓN QUE RESUELVA TODO EL PROBLEMA USANDO R Y/O EXCEL PARA EL MISMO.

Y1 Y2 X3 X4 X5 X6 X7 Y1 = Crímenes totales reportados por millón de habitantes
478 184 40 74 11 31 20 Y2 = Crímenes de violencia reportados por cada 100,000 habitantes
494 213 32 72 11 43 18 X3 = Presupuesto anual para la policía dólares por habitante
643 347 57 70 18 16 16 X4 = % de personas de 25 años o más que finalizaron la escuela superior (high school)
341 565 31 71 11 25 19 X5 = % de jovenes entre 16 y 19 años que no asisten a la escuela superior ni se han graduado de ella.
773 327 67 72 9 29 24 X6 = % de jóvenes de 18 a 24 años que asisten a la universidad
603 260 25 68 8 32 15 X7 = % de personas con 25 años o más que lograron una carrera universitaria de 4 años
484 325 34 68 12 24 14
546 102 33 62 13 28 11
424 38 36 69 7 25 12
548 226 31 66 9 58 15
506 137 35 60 13 21 9
819 369 30 81 4 77 36
541 109 44 66 9 37 12
491 809 32 67 11 37 16
514 29 30 65 12 35 11
371 245 16 64 10 42 14
457 118 29 64 12 21 10
437 148 36 62 7 81 27
570 387 30 59 15 31 16
432 98 23 56 15 50 15
619 608 33 46 22 24 8
357 218 35 54 14 27 13
623 254 38 54 20 22 11
547 697 44 45 26 18 8
792 827 28 57 12 23 11
799 693 35 57 9 60 18
439 448 31 61 19 14 12
867 942 39 52 17 31 10
912 1017 27 44 21 24 9
462 216 36 43 18 23 8
859 673 38 48 19 22 10
805 989 46 57 14 25 12
652 630 29 47 19 25 9
776 404 32 50 19 21 9
919 692 39 48 16 32 11
732 1517 44 49 13 31 14
657 879 33 72 13 13 22
1419 631 43 59 14 21 13
989 1375 22 49 9 46 13
821 1139 30 54 13 27 12
1740 3545 86 62 22 18 15
815 706 30 47 17 39 11
760 451 32 45 34 15 10
936 433 43 48 26 23 12
863 601 20 69 23 7 12
783 1024 55 42 23 23 11
715 457 44 49 18 30 12
1504 1441 37 57 15 35 13
1324 1022 82 72 22 15 16
940 1244 66 67 26 18 16

In: Math

Let x be a random variable that represents the percentage of successful free throws a professional...

Let x be a random variable that represents the percentage of successful free throws a professional basketball player makes in a season. Let y be a random variable that represents the percentage of successful field goals a professional basketball player makes in a season. A random sample of n = 6 professional basketball players gave the following information.

x 67 64 75 86 73 73
y 44 39 48 51 44 51

(e) Find a 90% confidence interval for y when x = 70. (Round your answers to one decimal place.)

lower limit     64.73  %
upper limit     %


(f) Use a 5% level of significance to test the claim that β > 0. (Round your answers to two decimal places.)

t =
critical t =

In: Statistics and Probability

Periodic Inventory by Three Methods; Cost of Merchandise Sold The units of an item available for...

Periodic Inventory by Three Methods; Cost of Merchandise Sold The units of an item available for sale during the year were as follows: Jan. 1 Inventory 50 units @ $114 Mar. 10 Purchase 50 units @ $122 Aug. 30 Purchase 30 units @ $128 Dec. 12 Purchase 70 units @ $130 There are 80 units of the item in the physical inventory at December 31. The periodic inventory system is used. Determine the inventory cost and the cost of merchandise sold by three methods. Round interim calculations to one decimal and final answers to the nearest whole dollar.

In: Accounting

Periodic Inventory by Three Methods; Cost of Merchandise Sold The units of an item available for...

Periodic Inventory by Three Methods; Cost of Merchandise Sold The units of an item available for sale during the year were as follows: Jan. 1 Inventory 50 units @ $114 Mar. 10 Purchase 50 units @ $122 Aug. 30 Purchase 30 units @ $128 Dec. 12 Purchase 70 units @ $130 There are 80 units of the item in the physical inventory at December 31. The periodic inventory system is used. Determine the inventory cost and the cost of merchandise sold by three methods. Round interim calculations to one decimal and final answers to the nearest whole dollar.

In: Accounting

The purpose of this assignment is to practice working with marketing research data, searching for patterns...

The purpose of this assignment is to practice working with marketing research data, searching for patterns in the numbers that might lead you to a new understanding about consumers, their behaviors or their preferences. Download the McSandwich Excel spreadsheet that lists the responses given by 50 customers of the fast food restaurant. The customers were asked questions about the food (quality & variety), service (friendly, fast & competent), pricing, the overall experience (recommend to a friend, general satisfaction), and some personal information (gender, frequency of dining there, and how close to the restaurant they lived). Sort the responses by gender (0 = male, 1 = female) and use the “Average” function to determine if males and females had different opinions about the restaurant’s food, service, pricing and overall experience. Sort the responses again, this time by usage (0 = infrequent diner, 1 = frequent diner). Once again, use the “Average” function to determine if frequent diners and infrequent diners had different opinions about the restaurant’s food, service, pricing and overall experience. Sort the responses one last time, this time by home location (1 = less than a mile from the restaurant, 2 = 1-5 miles from the restaurant, 3 = more than 5 miles from the restaurant). Again, use the “Average” function to determine if nearby and more distant consumers had different opinions about the restaurant’s food, service, pricing and overall experience. In a 2 page document, summarize your conclusions from the three different ways you examined the data. Please include the specific numeric data that led you to those conclusions. Then, describe at least 3 recommended marketing actions for McSandwich, based on those conclusions.

Customer ID number Friendly Employees (1 = not at all friendly, 10 = very friendly) Competitive Prices                    (1 = overpriced vs. competitors,         5 = a bargain vs. competitors) Competent Employees      (1 = not at all competent, 10 = very competent) Quality of Food              (1 = poor quality, 10 = high quality) Variety of Food                 (1 = not enough variety on menu, 5 = too much variety on menu) Speed of Service        (1 = very slow, 10 = very fast) Gender of Customer        (0 = M, 1 = F) How likely to Recommend Restaurant to a Friend               (1 to 10, with 10 most likely) Overall Satisfaction     (1 to 10, with 10 most satisfied) Frequency of visits                     (0 = infrequent diner, 1 = frequent diner) Distance from Home to Restaurant                (1 = less than a mile from the restaurant, 2 = 1-5 miles from the restaurant, 3 = more than 5 miles from the restaurant).   
1 4 1 5 5 2 5 0 3 4 0 1
2 3 5 6 6 3 8 1 5 5 1 2
3 6 1 10 8 5 5 0 6 7 1 3
4 5 2 10 7 5 8 0 5 6 1 3
5 6 2 9 5 3 8 0 6 5 1 2
6 2 2 9 5 3 6 0 3 4 0 1
7 3 1 8 4 1 7 1 4 4 0 1
8 5 1 10 7 3 7 0 5 6 1 3
9 3 4 6 5 3 6 0 4 4 0 1
10 5 1 10 6 4 7 0 5 6 1 3
11 3 1 9 4 2 6 0 4 5 1 1
12 3 4 9 7 3 8 0 6 5 1 2
13 5 1 9 5 3 4 0 5 5 1 2
14 2 2 7 5 3 7 1 4 4 0 1
15 4 3 10 4 2 5 0 5 5 1 2
16 3 3 6 5 3 8 1 4 3 0 1
17 5 2 9 6 2 5 0 6 6 1 3
18 2 1 8 3 1 6 1 4 4 0 1
19 4 4 6 6 3 9 1 4 5 1 2
20 1 2 7 5 3 9 1 3 4 0 1
21 2 3 6 5 3 8 1 4 4 0 1
22 5 2 9 5 1 6 0 5 6 1 3
23 2 3 7 4 2 9 1 4 3 0 1
24 3 2 10 5 3 4 0 6 5 1 2
25 6 1 9 5 2 7 0 7 5 1 2
26 4 1 8 6 3 5 0 4 5 1 2
27 5 4 6 6 3 9 1 5 6 1 2
28 4 1 9 3 2 6 0 4 4 0 1
29 5 4 7 7 4 10 1 6 6 1 3
30 4 2 8 5 3 4 0 5 6 1 2
31 3 2 10 5 3 4 0 5 5 1 2
32 4 1 9 6 3 7 0 5 5 1 2
33 1 2 7 5 3 10 1 4 3 0 1
34 4 3 9 6 4 7 0 6 6 1 3
35 5 2 9 4 2 5 0 6 4 0 1
36 4 5 6 6 3 8 1 5 5 1 2
37 4 2 10 5 2 5 0 5 5 1 2
38 3 2 7 7 3 8 1 4 4 0 1
39 4 1 8 6 3 5 0 4 5 1 2
40 1 2 7 5 3 10 1 4 3 0 1
41 6 2 9 4 2 5 0 6 5 1 1
42 2 3 6 6 4 8 1 4 4 0 1
43 3 3 9 6 3 7 1 5 6 1 2
44 2 3 8 6 3 7 1 5 6 1 2
45 3 1 7 6 3 8 1 3 4 0 1
46 3 3 8 7 4 8 0 5 4 0 1
47 3 4 5 8 4 6 0 4 5 1 2
48 4 1 7 5 2 5 0 3 4 0 1
49 5 1 9 5 3 7 0 6 5 1 2
50 3 2 7 7 3 8 1 4 4 0 1

In: Statistics and Probability

Poisson 1. Passengers of the areas lines arrive at random and independently to the documentation section...

Poisson

1. Passengers of the areas lines arrive at random and independently to the documentation section at the airport, the average frequency of arrivals is 1.0 passenger per minute.

to. What is the probability of non-arrivals in a one minute interval?

b. What is the probability that three or fewer passengers arrive at an interval of one minute?

C. What is the probability not arrived in a 30 second interval?

d. What is the probability that three or fewer passengers arrive in an interval of 30 seconds?

2. The average number of spots per yard of fabric follows a Poisson distribution. If λ = 0.2 spot per square yard.

to. Determine the probability of finding 3 spots in 2 square yards.

b. What is the probability of finding more than two spots in 4 square yards?

C. What is the average stain in 10 square yards?

Hypergeometric

1. It is known that of 1000 units of ACME cars of a lot of 8000, they are red. If 400 cars were sent to a wholesaler, what is the probability that you will receive a hundred or less red cars. (Assume X = red auto)

a) P (X <= 100) =? (Hypergeometric)

b) P (X> 50) =?

c) E (x) = expected value red cars

I. Continuous Distribution: Normal

1. Long distance telephone calls have a normal distribution with µ x = 8 minutes and σx = 2 minutes. Taking a unit up.

to. What is the probability that a call will last between 4 minutes and 10 minutes?

b. What is the probability that a call will last less than 9 minutes?

C. What is the value of X so that 12% of the experiment values ​​are greater than it?

d. If samples of size 64 are taken:

i. What proportion or probability of the sample means of the calls will be between 7 minutes and 9 minutes?

ii. What proportion or probability of the sample means of the calls is greater than 5 minutes?

iii. Between that two values ​​from the sample mean are 90% of the data.

Exponential

1. The time to fail in hours of a laser beam in a cytometric machina can be modeled by an exponential distribution with λ = .0005

to. What is the probability that a laser will fail more than 10000 hours?

b. What is the probability that a laser will fail less than 20,000 hours?

C. What is the probability that a laser will fail between 10,000 and 20,000 hours?

In: Statistics and Probability

in java Implement a function print2Darray(int[][] array) to print a formatted 4x4 two dimensional integer array....

in java

Implement a function print2Darray(int[][] array) to print a formatted 4x4 two dimensional integer array. When the array contains {{10, 15, 30, 40},{15, 5, 8, 2}, {20, 2, 4, 2},{1, 4, 5, 0}}, Your output should look like:

{10 15 30 40} {15 5 8 2}{ 20 2 4 2}{ 1450}

Now, implement another function print2DList(ArrayList<ArrayList<Integer>> list) to print a formatted 2D list.

In: Computer Science

perfect competition does not apply in two instances. What would suggest that the firms are not...

perfect competition does not apply in two instances. What would suggest that the firms are not perfectly competitive? What would be lost from studying these industries using only supply and demand analysis?

In: Economics