Questions
You are considering investing in two stocks, stock X and stock Y. Given your research, you expect two possible scenarios for the future

You are considering investing in two stocks, stock X and stock Y. Given your research, you expect two possible scenarios for the future: a bull market and a bear market. You also uncovered the return distribution of X and Y:

Scenarios

Probabilities

Return for Stock X

Return for Stock Y

Bull

0.3

0.8

-0.3

Bear

0.7

0.4

0.1

  1. Compute the expected return of X and Y. 

  2. Compute the standard deviation of X and Y. 

  3. Compute the Sharpe ratio of X and Y. Assume the risk-free rate is 1%. 

  4. Compute the covariance and correlation coefficient between X and Y. 

In: Finance

***Use R/STATA to perform the following analysis Data: ShareValue.xlsx contains data on N=309 firms which sold...

***Use R/STATA to perform the following analysis

Data: ShareValue.xlsx contains data on N=309 firms which sold new shares. Data on the following variables is provided. All variables are measured in millions of US dollars. ShrVal is the dependent variable and the all the remaining variables are the explanatory variables.

ShareValue: the total value of all shares outstanding, calculated as the price per share times the number of shares outstanding.

FirmDebt: firm’s long-term debt

TotalSales: sales of the firm.

Net_Income: net income of the firm.

TotalAssets: book value of the assets of the firm

1. Undertake appropriate basic data analytics to motivate the regression model above.

2. Using the dataset provided, run the above described regression model and interpret all regression coefficients.

3. Do you suspect any multicollinearity problem could affect the regression coefficients?

5. Use graphical method or a test of heteroscedasticity to check for evidence of heteroscedasticity in part 2.

6. Test the following hypothesis:

(a)     Is your regression model a significant predictor of share value variations for the sample of firms you are given?

(b)     Test that increasing sales by 20 million dollars, everything else held constant, would raise the share value by at least 5 million dollars;

(c)      Test the fact that jointly, a firm’s total assets and its outstanding debts better left out of this regression (BetaTotAssets = BetaDebt =0)

Use the Breusch-Pagan test to see if there is heteroskedasticity in this regression.

Use the White test to see if there is heteroskedasticity in this regression.

You should have found that heteroskedasticity is present. Using the strategy for "Log transforming the Model" investigate whether using a “double-log model” fixes the heteroscedasticity problem? For your transformed regression, state how the coefficients should be interpreted.

Does dividing the original (“levels”) model’s all variables by the FirmDebt variable fix the heteroskedasticity problem? For your transformed regression, state how the coefficients should be interpreted.

Using heteroskedasticity consistent estimator (HCE or White robust estimator). Estimate the regression model using one HCE.

Of the regressions in questions 9, 10, 11, which would you use as your preferred specification for inclusion for this particular project?

ShareValue FirmDebt TotalSales Net_Income TotalAssets
110.8 0.4 0.1 -5.9 11.8
52.7 0.3 57.6 1.3 13.4
108.8 0.4 7.6 -8.4 14.3
26.9 4.7 27 0.3 10.8
94 72.2 163.7 3.7 131.5
252.2 4.4 82.2 4.6 16.5
42.8 2.2 44.1 1.4 24.5
42.5 13 78.9 2.8 46
81.5 128.5 157.7 -0.2 190
472.3 283.9 1619.3 9.2 743.5
768.8 425 633.6 23.2 783.1
138.9 1.5 297.3 5.6 92.7
380.6 47 144.2 28.1 118
240 6.1 0.6 -3.7 12.9
158.2 0.6 1.4 -5.2 11.2
102.9 0.3 7.4 -3.1 7.1
69.3 20.4 102.4 1 64.6
59.4 2.4 33.8 2.5 27.3
72.2 0.2 68 9.4 44.6
28.4 2.6 13.2 0.5 9.9
287.8 0.5 23 0.6 21.1
260.8 16 63.3 7.6 47.7
82.8 7.2 96.8 6.3 49.8
18 1.6 9.3 1.3 7
52.5 0.5 35.8 0.6 5.1
62.5 0.2 54.9 2.8 18
75.6 0.5 16.5 0.3 17.5
77.2 0.6 10 -2.1 5.4
71.3 35 6.6 0.8 53.1
41.7 0.1 2.3 -1.5 2.5
205.6 9.8 161.5 10.1 58.8
2623.4 968.3 175.9 -61 658.9
57.7 0.4 0.6 -6.4 5.9
59.6 0.1 0.3 -2.8 1
94.1 0.4 0.1 -3.3 4.7
163.5 1 16.7 -6.4 26.8
64 13.4 710.8 5.3 92.9
122.9 7 20.8 1.6 28.3
144.7 2.2 413.7 7.7 94.6
21.8 0.3 2.8 0.6 1.2
199.2 238.3 27.7 5 525.2
186.4 1.3 92.6 7.6 122.8
55.8 0.1 14.2 1.2 7.9
304.8 2.5 0.3 -6.4 15.7
13.7 0.2 21.9 0.9 9.1
17.6 1.3 13.6 1.2 4.7
112.3 2.5 30.2 -0.9 13
166.6 1.4 5.5 -3.7 28.1
108.1 0.7 11.1 -0.3 4.5
147.5 0.1 16.7 1.2 10
545.8 376.1 667.2 14.9 668.3
173.4 5.3 93.5 4.7 103.2
32.5 4 36.8 1.9 22.6
61.5 0.2 30 -1.8 15.9
92.2 0.3 6.7 -3.6 5.7
39.6 0.6 17.7 1.4 2.9
24.8 0.6 5.5 0.5 5
21.4 1.9 13.1 0.6 7.4
96.8 4 28.7 -0.3 57.6
68.9 5.5 26.9 0.3 21.6
120.6 14.6 119.5 -0.2 106
234.4 111.8 38.1 -10.7 139.8
152.1 18.1 113.5 6.1 79.4
42.2 1.1 84.3 0.9 28.2
64.8 0.2 46.4 2.3 19.5
92.8 25 127.6 8.6 70.3
120.6 0.2 0.3 -5.2 7.5
95.8 0.7 15 -10.1 9.3
174.2 125.7 74.7 2.8 138.2
161 2.9 50.5 2.3 25.5
304.9 0.4 22.3 1.9 17
56.2 0.2 0.2 -3.4 3.6
361.3 0.3 34.9 -1.1 22.7
37 0.4 61.4 1.9 22.5
116.9 35 131 21.2 87.4
43.5 0.3 1.7 0.2 14.4
534.9 1.3 93.6 -1.2 58.1
386.1 49.1 96.4 -15.4 104.8
253.1 4.9 44 2 34.5
184.7 0.7 15.4 0.8 11.3
168.3 2.6 130.5 1.4 34.9
120 1.1 239.4 0.8 17.8
1734 0.3 718.7 73.2 301.9
162.9 36.1 21.2 9.4 87.4
231.8 231.2 53 -64.3 310.6
788.2 360 77 36.1 1077.9
206.9 94.3 657.3 8 275
145.4 1.9 18.1 7.3 21.2
749.3 258 122.9 -58.2 468.7
76 1.3 11.2 -4.2 8.9
509.9 10.3 270.7 8.4 157.2
87.2 29.5 6.7 5.1 59.8
468.1 493.5 359.7 13.5 306.5
2682.8 96.8 207.2 14.3 231.1
166.7 49.4 27.3 11.6 124
244 3.6 54.9 5.5 57.6
173 16.5 17.5 -9.7 40.3
242.6 80.4 21.8 12.9 204.7
112.6 237.1 51.1 3.2 288.6
828.5 451.6 5006.4 33.4 1083.1
884.2 442.3 127.3 1.2 1619.2
151.5 267.1 81.3 18.1 455.7
436.8 0.3 42.7 3 55.7
67.6 0.1 83 4.1 44
82.6 0.2 80.2 3.8 56.9
616.4 0.3 118.2 10.9 142.2
242.7 0.3 62.2 11.8 1231.1
296.5 0.4 0.9 -6.9 36
1622.2 0.4 377.8 51.3 370.5
53.8 0.7 0.2 -6.1 3.9
374.2 0.8 21.2 -3.9 42.9
466.7 0.8 81 -17.2 103.5
359.7 0.9 171.2 -4.6 171.6
1132.6 1.5 75.6 19.5 136.4
891.9 2.5 253.4 11.2 128.8
338.2 2.7 63.8 -1.6 58.8
186.7 2.8 10.8 -6.1 48
68.7 2.8 4 1.4 52.8
605.8 3.3 41.6 9 92.6
942.8 6.7 147.8 11.7 192.8
366.5 7.6 119.3 22.7 157.5
334.8 9.5 20.2 0.9 302.8
1655.3 14.8 609.8 12.4 141.7
133.9 17.4 94.3 4.8 92.5
495.7 29.6 287.1 14.6 258.9
194.3 35.5 351.9 17.4 225.7
1516.7 41.8 1.1 0.6 579.2
856.4 55.9 135.1 8.7 210.4
458.3 100 293.8 23 192.6
2058.3 111.6 1085.8 -50.2 639.8
75.4 137 17.5 4.4 528.2
318.9 137.3 84.1 17.1 242.7
312.1 142.6 96.2 -6.5 235.3
681.8 178.9 387.7 33.7 416.8
760 180.7 1041.2 21.7 741.9
392.3 184.3 267.3 15.1 498.5
434.7 188.5 77.4 15 325.1
198 192 418.2 13.9 634.1
908.9 259.2 1330.9 48.9 985.5
998.2 269.6 94.8 14.5 323.5
670.6 340 1248.8 48.2 1211.5
949.9 349.4 138.9 102.4 848.6
1005.8 373.9 545.4 26.7 734.1
975.6 409.8 131.4 35 1045.6
38396.6 1112 4937 337 5469
730.6 1371.7 219.9 -1.9 584.5
5722.3 1577 4109 202 4134
1457.4 1836.4 869.1 96.7 3403.1
5397.3 1940.3 16121.5 299.7 5032.7
1486.9 2222 5905 342 4821
4024.7 3523 6804 259 9495
5449.9 4541 5465 449 11296
374 345.5 81.7 -21.7 233.1
2462.5 82.5 147.7 27.1 658.2
1048.3 3.5 4.9 -31.3 157.2
528.9 351.8 512.9 32.9 408.4
164.9 1.6 5.4 -6.9 37.6
694.7 397.7 154.8 35.4 534.8
333.8 116.1 233.3 12 251.7
312 155.2 45.9 14.4 397.4
2545.8 2004.5 2635.2 -432.3 6057
215.9 4.7 0.6 -12.6 26
473.5 3.4 106.3 18.4 88
1567.5 384.8 735.3 66.6 1154
741.6 23.3 671.4 11.3 303.7
240.4 1.8 22.4 7.2 27.4
325.4 7.1 188.9 -5.4 124
259.6 121.6 170.1 22.4 1873.8
486 74.7 102.5 43 911
874.9 207.3 499.4 73.1 3150
672.7 0.5 176.7 14.6 108.5
991.3 12.5 205.6 19.3 244.6
1039.5 1.5 101.7 7.5 74.3
306.5 24.5 346.3 24.5 320.5
56.3 1.5 245.9 2.1 82.4
182.5 6 8.9 0.4 26.2
830 310.4 982 39.1 767.9
484.8 236.6 231.8 8.3 188.3
76.2 1.8 84.9 6.1 44
409.7 6.4 25.2 -5 55.2
79.3 23.2 156.8 -5.7 127.5
501.8 86.3 432.5 9.5 206
176 9.5 664.1 7.9 155.1
1064.3 15.4 60.7 -32.6 147
215.3 68.8 300.2 -7.2 1132.8
1886.1 222.5 807.2 61.4 660
304.1 231.8 54.5 20.1 449.5
1335.6 1338.4 3494.3 74.4 3687.8
1571.7 0.7 11.4 -23 78.1
108.9 142.5 80.7 5.9 224.1
150.5 1.5 139.7 7.1 75.3
2390.7 146.8 1047.7 85.7 1276.5
165.2 262.5 39.8 8.2 378.5
452.4 1.3 8.8 -29.4 44.9
136.1 0.1 73.8 2.8 40.2
217.7 0.5 1.3 -18 47
252.9 1 94.8 3.9 39.4
78.1 2.6 0.9 -10.2 17.4
88.8 0.2 22.7 2.5 73.1
7415.8 554.4 763.3 142.7 1398.1
156.4 4.2 19.2 2 48.7
1318.8 24 510.6 48.7 1792.2
233.2 105.1 84.1 1 354.2
389.1 63.4 188.2 17 268
3201.6 466.2 317.8 25.1 595
312.9 38.3 119.7 4.9 181
1080 154.4 234.4 14.2 355.1
495 25.9 890 18.4 363.8
182.2 134.3 532.4 11.6 305.6
835.7 57.7 496.6 18.8 305.7
1626 82.7 399.6 24.8 360.8
609.4 8 183 10.8 196
988.2 335.9 201 24 447.3
482.5 2 2.7 -10.2 27.3
1111.2 375.4 353.4 12.6 755.6
927.6 42.1 336.5 21.6 173.6
52.3 0.9 5.1 -6.1 13.3
123 123.1 55.9 -16.7 178.7
567.8 315.3 133 -3.4 466
236.2 0.5 110 -32.7 72.7
266.7 26.5 37.4 17.6 225.1
763.1 243.2 388.2 38.5 295.8
188.3 7.8 328.7 8.9 152.9
790.4 344.4 442 26.6 1064.8
570.5 2384 565 -82 3557
1442.9 354.1 2732.1 101.1 1213.7
2418.3 0.4 51.7 -3.8 122.2
1072.7 118.5 949.8 78.7 7594.8
87.2 9.4 97.5 2.9 42.9
466 9.7 41.8 -11.5 100.3
608.5 16 350.9 20.3 254
308 1.8 104.9 7 40.6
953 116.5 3155 35.4 558.8
315.7 9.7 132.9 16.1 119.4
416 2295 130.6 9.6 137
276.7 241.4 157.9 -25.4 230.8
221.6 10.1 40.4 1.5 38.7
83.1 20.2 38.7 10.6 133.5
137.3 57.8 70.2 -8.4 139.5
167.7 210 83.1 11.4 277.2
277.7 163.7 1082.2 16.1 379.1
353.9 70 155.9 27.2 687.5
643.3 0.2 0.5 -11.7 11.3
171.9 0.5 22.5 2.2 31.5
305.6 42.4 21.8 4.9 173.4
926.2 7 137.3 23.3 204.6
559.2 346.2 87.9 16.7 737.6
43 0.1 16 1.9 14.6
448.1 79.8 79.5 32.8 842.6
968 27.7 641.1 53.3 1130.9
712.4 68.7 209.1 17 141.4
104.9 0.6 14.9 -1.4 6.8
288.3 125.2 128 9.9 216.1
323.6 144.9 161.7 1.5 418371
161.3 1.6 17.3 2.2 22.8
323.9 2 47.1 2.7 43.9
51.4 2.4 18.6 1.4 22.4
227.8 65.7 576.3 28.2 316.7
125.9 2.2 0.9 -5.2 15.5
120.6 0.1 32.8 1.3 26.5
1415.9 2.8 83.2 -2.1 64.4
456.8 0.7 57.1 3.6 108.4
324.1 282.8 729.4 17 824.2
289.8 0.4 58.5 3.5 23.2
759 139.9 21.3 1.7 73.6
218.4 1.2 11.8 0.4 11.7
100.1 6.9 143.9 7 36
77.3 41.2 130.4 4.2 100.3
356.4 1.2 1 -10.8 24.1
69.9 3.5 8.8 -12.9 29.1
139.8 0.8 36.2 5.8 32.8
307.2 22.6 41.4 4.6 90.8
2047.3 143.3 78.9 -57.1 260.3
53.2 7.2 22 0.6 16.5
656.3 250 924.6 28.1 1512.9
167.8 0.7 9.6 -3.3 10.6
1253.1 2.9 634.5 33.1 247.5
34.8 0.1 38.2 -0.6 18.1
20.7 20.1 59.6 1.3 16.4
76.4 0.8 19.9 -1.4 9.4
372.7 2 27.4 -22.7 57.3
73.7 1.2 78.2 -1.4 40.9
226 0.1 25.6 3.7 24
79.2 0.9 7.2 2 9.6
36.2 241.8 49.7 6.2 608.4
184.5 9.9 3.1 -20.7 43.8
333 5.9 819.4 6.6 259.6
67.3 1.2 10 -1.9 4.3
277.2 1.5 125.4 -1.5 48.9
388.2 219.9 210.5 -7.6 304.7
841.6 0.1 19.7 16.9 51.3
52.3 1.6 19.7 -4.4 22.4
176.4 1.1 3.8 -8.7 11.6
87.6 5.1 25.4 1.3 40.7
267.4 0.1 117.9 -16.4 65.1
21.7 0.8 5.8 -11.3 9.8
696.7 353.9 91.3 -20.1 125.9
638.4 125 415.6 7.1 347.6
146.5 3.7 211.8 8.4 88.7
103.6 0.7 25.3 1 12
37.1 2.1 4.6 -4 11
219.1 48.2 306.1 10.4 167.4
138.4 1.4 1.7 -5.8 22.3
257.9 0.7 69.7 -8.3 79.5
4341.6 46 508.1 20.1 341.4
140.8 5.1 26.3 4.1 35.9
136.2 13.5 1034.9 4.6 281.9
73.2 0.2 5.6 -5.7 4.7
219.2 2.5 31.6 4.7 59.6

In: Statistics and Probability

Before each class, I either drink a cup of coffee, a cup of tea, or a...

Before each class, I either drink a cup of coffee, a cup of tea, or a cup of water. The probability of coffee is 0.7, the probability of tea is 0.2, and the probability of water is 0.1. If I drink coffee, the probability that the lecture ends early is 0.3. If I drink tea, the probability that the lecture ends early is 0.2. If I drink water, the lecture never ends early.
1) What’s the probability that I drink tea and finish the lecture early?
2) What’s the probability that I finish the lecture early?
3) Given the lecture finishes early, what’s the probability I drank coffee?

In: Statistics and Probability

Caro Manufacturing has two production departments, Machining and Assembly, and two service departments, Maintenance and Cafeteria....

Caro Manufacturing has two production departments, Machining and Assembly, and two service departments, Maintenance and Cafeteria. Direct costs for each department and the proportion of service costs used by the various departments for the month of August follow:

Proportion of Services Used by
Department Direct Costs Maintenance Cafeteria Machining Assembly
Machining $ 110,000
Assembly 66,000
Maintenance 51,000 0.2 0.5 0.3
Cafeteria 35,000 0.7 0.2 0.1

Required:

Use the step method to allocate the service costs, using the following:

a. The order of allocation starts with Maintenance.

b. The allocations are made in the reverse order (starting with Cafeteria).

In: Accounting

The accompanying table provides data for​ tar, nicotine, and carbon monoxide​ (CO) contents in a certain...

The accompanying table provides data for​ tar, nicotine, and carbon monoxide​ (CO) contents in a certain brand of cigarette. Find the best regression equation for predicting the amount of nicotine in a cigarette. Why is it​ best? Is the best regression equation a good regression equation for predicting the nicotine​ content? Why or why​ not?

Tar   Nicotine   CO
5   0.5   3
15   1.0   19
17   1.1   16
14   0.7   19
14   0.8   19
14   1.0   13
15   1.0   16
14   1.1   14
15   1.2   15
8   0.8   12
13   0.8   18
12   0.8   16
12   0.8   18
15   1.0   17
2   0.3   3
16   1.1   17
15   1.0   14
13   0.7   19
13   1.1   14
15   0.9   16
15   1.1   14
15   1.1   16
8   0.6   8
18   1.3   17
14   1.1   13

Find the best regression equation for predicting the amount of nicotine in a cigarette. Use predictor variables of tar and/or carbon monoxide​ (CO). Select the correct choice and fill in the answer boxes to complete your choice.

A. Nicotine = __ + (__) Tar + (__) CO

B. Nicotine = __ + (__) Tar

C. Nicotine = __ + (__) CO

In: Statistics and Probability

Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1

Consider the system modeled by the differential equation

                              dy/dt - y = t    with initial condition y(0) = 1

the exact solution is given by y(t) = 2et − t − 1

 

Note, the differential equation dy/dt - y =t can be written as

                                              dy/dt = t + y

using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt

                              (y(t + Dt) – y(t))/ Dt = (t + y)

                               y(t + Dt) = (t + y)Dt + y(t)

                              New Value = change + current value

 

 

  1. Using R implement Euler’s method directly to numerically solve the equation and construct a Table as below – list data to four digits past the decimal point. Submit your R session

               time     ∆t = 0.1           ∆t = 0.0001        Exact Value       %Relative                  %Relative

                                                                                                             Error ∆t = 0.1       Errort = 0.0001                    

                  0

                 0.1

                 0.2

                 0.3

                 0.4

                 0.5

                 0.6

                 0.7

                 0.8

                 0.9

                 1.0

In: Advanced Math

(a) Calculate the five-number summary of the land areas of the states in the U.S. Midwest....

(a) Calculate the five-number summary of the land areas of the states in the U.S. Midwest. (If necessary, round your answer to the nearest whole number.)

minimum     square miles ?
first quartile     square miles ?
median     square miles ?
third quartile     square miles ?
maximum     square miles ?
State Area
(sq. miles)
State Area
(sq. miles)
Illinois 55,584 Missouri 68,886
Indiana 35,867 Nebraska 76,872
Iowa 55,869 North Dakota 68,976
Kansas 81,815 Oklahoma 68,595
Michigan 56,804 South Dakota 75,885
Minnesota 79,610 Wisconsin 54,310


(b) Explain what the five-number summary in part (a) tells us about the land areas of the states in the midwest.


(c) Calculate the five-number summary of the land areas of the states in the U.S. Northeast. (If necessary, round your answer to the nearest whole number.)

minimum     square miles
first quartile     square miles
median     square miles
third quartile     square miles
maximum     square miles
State Area
(sq. miles)
State Area
(sq. miles)
Connecticut 4845 New York 47,214
Maine 30,862 Pennsylvania 44,817
Massachusetts 7840 Rhode Island 1045
New Hampshire 8968 Vermont 9250
New Jersey 7417


(d) Explain what the five-number summary in part (c) tells us about the land areas of the states in the Northeast.

(d) Contrast the results from parts (b) and (d).

In: Math

A trucking company determined that the distance traveled per truck per year is normally distributed, with...

A trucking company determined that the distance traveled per truck per year is normally distributed, with a mean 60 thousand miles and a standard deviation of 11 thousand miles.

How many miles will be traveled by at least 65% of the truck?
The number of miles that will be traveled by at least 65% of the truck is ____ miles

In: Math

The lifetime of Brand A tires are distributed with mean 45,000 miles and standard deviation 4900...

The lifetime of Brand A tires are distributed with mean 45,000 miles and standard deviation 4900 miles, while Brand B tiees last for only 36,000 miles on the average(mean) with standard deviation of 2010 miles. Niccoles Brand A tires lasted 37,000 miles and Yvettes Brand B tires lasted 35,000 miles. Relatively speaking, within their own brands, which driver fot the better wear?

In: Statistics and Probability

The data in the below portion of a frequency distribution shows the amount of miles run...

The data in the below portion of a frequency distribution shows the amount of miles run per day by people in a running club. What is the mean of the grouped data?

Miles (per day)            Frequency

1-2                               22

3-4                               30

5-6                               3

7-8                               28

9-10                             5

a.

5.123 miles

b.

3.876 miles

c.

4.500 miles

d.

4.682 miles

In: Statistics and Probability