Questions
I want to know how to solve the following in excel. What is the x value...

I want to know how to solve the following in excel. What is the x value and what is the Y value using the data table below?

Wal-Mart is the second largest retailer in the world. The data file (Wal-Mart Revenue 2004-2009.xlsx) is posted below the case study one file, and it holds monthly data on Wal-Mart’s revenue, along with several possibly related economic variables.

A. Develop a linear regression model to predict Wal-Mart revenue, using CPI as the only independent variable.

B. Develop a linear regression model to predict Wal-Mart revenue, using Personal Consumption as the only independent variable.

C. Develop a linear regression model to predict Wal-Mart revenue, using Retail Sales Index as the only independent variable.

D. Which of these three models is the best? Use R-square values, Significance F values, p-values and other appropriate criteria to explain your answer.

E. Generate a scatter plot, residual plot and normal probability plot for the best model in part (d) and comment on what you see.

Date Wal Mart Revenue CPI Personal Consumption Retail Sales Index December
1/30/2004 12.131 554.9 7977730 281463 0
2/27/2004 13.628 557.9 8005878 282445 0
3/31/2004 16.722 561.5 8070480 319107 0
4/29/2004 13.98 563.2 8086579 315278 0
5/28/2004 14.388 566.4 8196516 328499 0
6/30/2004 18.111 568.2 8161271 321151 0
7/27/2004 13.764 567.5 8235349 328025 0
8/27/2004 14.296 567.6 8246121 326280 0
9/30/2004 17.169 568.7 8313670 313444 0
10/29/2004 13.915 571.9 8371605 319639 0
11/29/2004 15.739 572.2 8410820 324067 0
12/31/2004 26.177 570.1 8462026 386918 1
1/21/2005 13.17 571.2 8469443 293027 0
2/24/2005 15.139 574.5 8520687 294892 0
3/30/2005 18.683 579 8568959 338969 0
4/29/2005 14.829 582.9 8654352 335626 0
5/25/2005 15.697 582.4 8644646 345400 0
6/28/2005 20.23 582.6 8724753 351068 0
7/28/2005 15.26 585.2 8833907 351887 0
8/26/2005 15.709 588.2 8825450 355897 0
9/30/2005 18.618 595.4 8882536 333652 0
10/31/2005 15.397 596.7 8911627 336662 0
11/28/2005 17.384 592 8916377 344441 0
12/30/2005 27.92 609.4 8955472 406510 1
1/27/2006 14.555 573.9 9034368 322222 0
2/23/2006 16.87 595.2 9079246 318184 0
3/31/2006 16.639 598.6 9123848 366989 0
4/28/2006 17.2 603.5 9175181 357334 0
5/25/2006 16.901 606.5 9238576 380085 0
6/30/2006 21.47 607.8 9270505 373279 0
7/28/2006 16.542 609.6 9338876 368611 0
8/29/2006 16.98 610.9 9352650 382600 0
9/28/2006 20.091 607.9 9348494 352686 0
10/20/2006 16.583 604.6 9376027 354740 0
11/24/2006 18.761 603.6 9410758 363468 0
12/29/2006 28.795 604.5 9478531 424946 1
1/26/2007 16.1 606.3 9540335 332797 0
2/23/2007 17.984 594.6 9500318 327686 0
3/30/2007 18.939 599.3 9547774 376491 0
4/27/2007 22.47 613.3 9602393 366936 0
5/25/2007 19.201 642.8 9669845 389687 0
6/29/2007 23.77 623.9 9703817 382781 0
7/27/2007 18.942 625.6 9776564 378113 0
8/31/2007 19.38 626.9 9791220 392125 0
9/28/2007 22.491 623.9 9786798 362211 0
10/26/2007 18.983 619.9 9816093 364265 0
11/30/2007 21.161 620.6 9931068 372970 0
12/28/2007 31.245 642.5 9953178 434488 1
1/25/2008 19.923 623.4 10018937 342422 0
2/29/2008 21.512 622.3 10146599 344464 0
3/28/2008 19.023 626.9 10197093 339463 0
4/25/2008 20.178 651.2 10255207 388158 0
5/30/2008 21.9 636.1 10326976 378653 0
6/27/2008 21.24 638.7 10363123 397579 0
7/25/2008 22.1 640.2 10440525 394488 0
8/29/2008 20.981 641.9 10456119 389780 0
9/26/2008 20.419 643.2 10451414 403812 0
10/31/2008 20 641.2 10482584 373978 0
11/28/2008 21.022 637.9 10521902 381932 0
12/26/2008 32.85 656.9 10508628 443677 1
1/30/2009 19.784 637.8 10578596 350195 0
2/27/2009 20.962 639.7 10714428 353997 0
3/27/2009 22.951 638.9 10768153 356183 0
4/24/2009 22.062 643.7 10829987 351032 0
5/29/2009 20.856 648.1 10906349 354928 0
6/26/2009 23.700 649.4 10944809 395869 0
7/31/2009 24.413 651.4 11027165 389656 0

In: Math

Jim earned a salary of $60,000 in 2002 and $80,000 in 2007. The consumer price index...

Jim earned a salary of $60,000 in 2002 and $80,000 in 2007. The consumer price index was 177 in 2002 and 221.25 in 2007. Jim's 2002 salary in 2007 dollars is

A. $85,000; thus, Jim's purchasing power decreased between 2002 and 2007.

B. $85,000; thus, Jim's purchasing power increased between 2002 and 2007.

C. $75,000; thus, Jim's purchasing power increased between 2002 and 2007.

D. $75,000; thus, Jim's purchasing power decreased between 2002 and 2007.

Assume an economy experienced a positive rate of inflation between 2004 and 2005 and again between 2005 and 2006. However, the inflation rate was lower between 2005 and 2006 than it was between 2004 and 2005. Which of the following scenarios is consistent with this assumption?

A. The CPI was 100 in 2004, 105 in 2005, and 130 in 2006.

B. The CPI was 100 in 2004, 110 in 2005, and 105 in 2006.

C. The CPI was 100 in 2004, 90 in 2005, and 88 in 2006.

D. The CPI was 100 in 2004, 120 in 2005, and 135 in 2006.

In: Economics

(c) Does it seem that Wal-Mart’s revenue is closely related to the general state of the...

(c) Does it seem that Wal-Mart’s revenue is closely related to the general state of the economy?

Identify and remove the six cases corresponding to December revenue.

(f) Does it seem that Wal-Mart’s revenue is closely related to the general state of the economy? Use all plots and statistical criteria on the Excel Regression output to explain it. (g) Compare the results of parts (a) and (d), which of these two models is better? Use R-square values, adjusted R-square values, Significance F values, p-values, scatter plots, residual plots and normal probability plots to explain your answer.

Date Wal Mart Revenue CPI Personal Consumption Retail Sales Index December
11/28/2003 14.764 552.7 7868495 301337 0
12/30/2003 23.106 552.1 7885264 357704 1
1/30/2004 12.131 554.9 7977730 281463 0
2/27/2004 13.628 557.9 8005878 282445 0
3/31/2004 16.722 561.5 8070480 319107 0
4/29/2004 13.98 563.2 8086579 315278 0
5/28/2004 14.388 566.4 8196516 328499 0
6/30/2004 18.111 568.2 8161271 321151 0
7/27/2004 13.764 567.5 8235349 328025 0
8/27/2004 14.296 567.6 8246121 326280 0
9/30/2004 17.169 568.7 8313670 313444 0
10/29/2004 13.915 571.9 8371605 319639 0
11/29/2004 15.739 572.2 8410820 324067 0
12/31/2004 26.177 570.1 8462026 386918 1
1/21/2005 13.17 571.2 8469443 293027 0
2/24/2005 15.139 574.5 8520687 294892 0
3/30/2005 18.683 579 8568959 338969 0
4/29/2005 14.829 582.9 8654352 335626 0
5/25/2005 15.697 582.4 8644646 345400 0
6/28/2005 19.23 582.6 8724753 351068 0
7/28/2005 17.26 580.2 8833907 351887 0
8/26/2005 15.709 588.2 8825450 355897 0
9/30/2005 18.618 595.4 8882536 333652 0
10/31/2005 15.397 596.7 8911627 336662 0
11/28/2005 17.384 592 8916377 344441 0
12/30/2005 27.92 589.4 8955472 406510 1
1/27/2006 14.555 593.9 9034368 322222 0
2/23/2006 18.684 595.2 9079246 318184 0
3/31/2006 16.639 598.6 9123848 366989 0
4/28/2006 20.17 603.5 9175181 357334 0
10/26/2007 18.983 621.6 9836807 364265 0
11/30/2007 21.161 620.6 9870758 372970 0
12/28/2007 31.245 622.5 9946331 434488 1
1/25/2008 22.923 623.35 10008141 342422 0
2/29/2008 21.512 622.28 10032148 344464 0
3/28/2008 22.023 626.9 10030959 339463 0
4/25/2008 20.178 631.2 10075561 388158 0
5/30/2008 23.509 636.1 10126994 378653 0
6/27/2008 21.24 638.7 10190289 401354 0
7/25/2008 24.809 640.2 10223995 394488 0
8/29/2008 20.981 641.9 10291369 389780 0
9/26/2008 20.419 643.2 10305343 403812 0
10/31/2008 23.53 641.2 10301087 373978 0
11/28/2008 21.022 637.9 10328520 375932 0
12/26/2008 23.2 636.9 10362495 384677 0
1/30/2009 32.784 637.8 10438041 446195 1
2/27/2009 23.962 639.65 10499948 353997 0
3/27/2009 22.951 638.948 10523764 356183 0
4/24/2009 24.062 643.7 10522721 351032 0

In: Statistics and Probability

ACTIVITY 2 Use the information below to calculate the CPI and inflation rate Basket                  8 pair...

ACTIVITY 2

Use the information below to calculate the CPI and inflation rate

Basket                  8 pair of shoes                  4 oil changes

Year

Price of shoes

Price of oil changes

2003

$50

$15

2004

$60

$20

2005

$70

$25

2006

$80

$30

2007

$90

$35

Compute the cost of the basket of goods.

2003

2004

2005

2006

2007

Calculate the CPI use 2003 as the base year.

2003

2004

2005

2006

2007

Calculate the inflation rate use beginning with the inflation rate between 2003 and 2004

2004

2005

2006

2007

Use the information below to calculate the CPI and the Inflation rate

Basket                  10 DVDs                             6 gallons of Milk

Year

Price of DVDs

Price of gallon of milk

2004

$8

$2

2005

$12

$3

2006

$16

$4

2007

$20

$5

Compute the cost of the basket of goods

2004

2005

2006

2007

Calculate the CPI use 2004 as the base year.

2004

2005

2006

2007

Calculate the inflation rate beginning with the inflation rate between 2004 and 2005

2005

2006

2007

Suppose a local news anchorperson in 1960 made $30,000 and the price level in 1960 was 45. Today’s price level is 210. What is the 1960’s local news anchorperson salary worth in today’s dollars.(This is similar to the Babe Ruth example in the notes

Suppose the nominal interest rate is 14% and the inflation rate is 5%. What is the real interest rate?

Suppose the real interest rate is 7% and the inflation rate is 6%. What is the nominal interest rate?

In: Economics

Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs,...

Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs, Florida, during 2005 and 2006 are as follows: 2005 Season 73 77 78 76 74 72 74 76 2006 Season 70 69 74 76 84 79 70 78 Calculate the mean (0 decimals) and the standard deviation (to 2 decimals) of the golfer's scores, for both years. 2005 Mean Standard deviation 2006 Mean Standard deviation What is the primary difference in performance between 2005 and 2006? What improvement, if any, can be seen in the 2006 scores?

In: Statistics and Probability

Define the term skewness and kurtosis. With the aid of a diagram, describe the three types...

  1. Define the term skewness and kurtosis. With the aid of a diagram, describe the three types of kurtosis.            4marks
  2. Describe the components of a time series and mention their applicability. 4marks

  1. The table below relates to the sales of refrigerators by a certain firm in Kenya.

Year production in (000) Year Production in (000)

1996 17    2002 35

1997 20 2003   55

1998 19 2004 50

1999 26 2005 74

2000 24 2006 69

2001 40

Using this data;

  1. Fit a straight line trend by the method of ordinary least squares
  2. ii. Estimate the number of refrigerators that will be sold in the year 2009.

In: Statistics and Probability

There are three columns of data: a monthly date, a closing price for an individual stock,...

  1. There are three columns of data: a monthly date, a closing price for an individual stock, and the market close.
    1. Calculate a monthly return series from the closing monthly prices of both the market and the individual security.
    2. Calculate the arithmetic mean return and the standard deviation of the monthly return for both series.
    3. Calculate the geometric mean return for both series.
    4. Calculate the beta of the individual security.

Date   Closing Price   Market Closing Price   Security Return   Market Return
12/1/2003   43.73   1111.92      
1/1/2004   42.43   1131.13      
2/1/2004   43.05   1144.94      
3/1/2004   43.56   1126.21      
4/1/2004   43.8   1107.3      
5/1/2004   44.47   1120.68      
6/1/2004   43.93   1140.84      
7/1/2004   38.17   1101.72      
8/1/2004   38.91   1104.24      
9/1/2004   35.06   1114.58      
10/1/2004   35.59   1130.2      
11/1/2004   34.63   1173.82      
12/1/2004   36.68   1211.92      
1/1/2005   36.55   1181.27      
2/1/2005   37.7   1203.6      
3/1/2005   36.95   1180.59      
4/1/2005   38.52   1156.85      
5/1/2005   39.57   1191.5      
6/1/2005   37.26   1191.33      
7/1/2005   39.05   1234.18      
8/1/2005   39.26   1220.33      
9/1/2005   38.79   1228.81      
10/1/2005   38.42   1207.01      
11/1/2005   38.59   1249.48      
12/1/2005   36.44   1248.29      
1/1/2006   37.41   1280.08      
2/1/2006   37.94   1280.66      
3/1/2006   38.13   1294.87      
4/1/2006   38.21   1310.61      
5/1/2006   40.09   1270.09      
6/1/2006   39.46   1270.2      
7/1/2006   40.81   1276.66      
8/1/2006   41.1   1303.82      
9/1/2006   41.26   1335.85      
10/1/2006   43.15   1377.94      
11/1/2006   43.54   1400.63      
12/1/2006   44.86   1418.3      
1/1/2007   44.51   1438.24      
2/1/2007   43.4   1406.82      
3/1/2007   44.94   1420.86      
4/1/2007   48.87   1482.37      
5/1/2007   49.62   1530.62      
6/1/2007   49.31   1503.35      
7/1/2007   49.12   1455.27      
8/1/2007   50.69   1473.99      
9/1/2007   54.5   1526.75      
10/1/2007   58.57   1549.38      
11/1/2007   59.22   1481.14      
12/1/2007   58.52   1468.36      
1/1/2008   56.26   1378.55      
2/1/2008   55.74   1330.63      
3/1/2008   58.42   1322.7      
4/1/2008   56.5   1385.59      
5/1/2008   54.95   1400.38      
6/1/2008   50.21   1280      
7/1/2008   49.75   1267.38      
8/1/2008   50.3   1282.83      
9/1/2008   51.45   1164.74      
10/1/2008   42.86   968.75      
11/1/2008   45.99   896.24      
12/1/2008   44.42   903.25      
              
Arithmetic mean              
Geometric mean               
Standard deviation              
              
Covariance              
Beta              

In: Finance

Shown here are Caterpillar's annual global sales and revenue streams for the years 2004 through 2014....

Shown here are Caterpillar's annual global sales and revenue streams for the years 2004 through 2014. By observing the data graphically and analyzing the data statistically using techniques and concepts from this chapter (forecasting trend line, etc.), share your insights and conclusions about Caterpillar's annual global sales and revenue streams over this period of time.

YEAR SALES AND REVENUE STREAMS ($ BILLIONS)
2004 30.31
2005 36.34
2006 41.52
2007 44.96
2008 51.32
2009 32.40
2010 42.59
2011 60.14
2012 65.88
2013 55.66
2014 55.18

In: Statistics and Probability

Problem 1 At a local supermarket, customers spend an average of 74 AED. The standard deviation...

Problem 1 At a local supermarket, customers spend an average of 74 AED. The standard deviation is 30 AED. If 60 customers come to the supermarket today, what is the probability that the total revenue of the supermarket will be between 4000 AED and 5000 AED.

In: Statistics and Probability

Compute and Interpret Liquidity, Solvency and Coverage Ratios Selected balance sheet and income statement information for...

Compute and Interpret Liquidity, Solvency and Coverage Ratios
Selected balance sheet and income statement information for Calpine Corporation for 2004 and 2006 follows.

($ millions) 2004 2006
Cash $ 1,376.73 $ 1,503.36
Accounts receivable 1,097.16 735.30
Current assets 3,563.56 3,168.33
Current liabilities 3,285.39 6,057.95
Long-term debt 16,940.81 3,351.63
Short-term debt 1,033.96 4,568.83
Total liabilities 22,628.42 25,743.17
Interest expense 1,516.90 1,288.29
Capital expenditures 1,545.48 211.50
Equity 4,587.67 (7,152.90)
Cash from operations 9.89 155.98
Earnings before interest and taxes 1,589.84 1,877.84

(a) Compute the following liquidity, solvency and coverage ratios for both years. (Round your answers to two decimal places.)
2006 current ratio = Answer
2004 current ratio = Answer

2006 quick ratio = Answer
2004 quick ratio = Answer

2006 liabilities-to-equity = Answer
2004 liabilities-to-equity = Answer

2006 total debt-to-equity = Answer
2004 total debt-to-equity = Answer

2006 times interest earned = Answer
2004 times interest earned = Answer

2006 cash from operations to total debt = Answer
2004 cash from operations to total debt = Answer

2006 free operating cash flow to total debt = Answer
2004 free operating cash flow to total debt = Answer

(b) Which of the following best describes the company's credit risk?

Both the quick ratio and current ratio for 2006 are lower than 1.0 and have increased in the past two years. Along with interest coverage ratios that are exceedingly high, the probability that the company will face default has significantly increased.

Both the quick ratio and current ratio for 2006 are lower than 1.0 and have decreased in the past two years. Along with interest coverage ratios that are exceedingly low, the probability that the company will face default has significantly increased.

Both the quick ratio and current ratio for 2006 are above 1.0 and have decreased in the past two years. Along with interest coverage ratios that are exceedingly low, the probability that the company will face default has significantly decreased.

Both the quick ratio and current ratio for 2006 are above 1.0 and have increased in the past two years. Along with interest coverage ratios that are exceedingly high, the probability that the company will face default has significantly decreased.

In: Accounting