Find the subgroup of d4 and the normal and non normal subgroups of d3 and d4 using u and v, u being the flips and v being the rotations.
In: Advanced Math
A non current asset is classified as held for sale. On the date of classification, immediately prior to the transfer to the 'held for sale' classification, the asset had: a cost of $100 000, accumulated depreciation of $40 000(10% per annum, straight line over 4 years); and accumulated impairment losses in terms of IAS 36 of $15 000. The asset was then impaired in terms of IFRS 5 by $10 000. Asume that the above asset had not yet been sold at the end of the following reporting date, at which point its fair value less cost to sell was $75 000.
In: Accounting
A non current asset is classified as held for sale. On the date of classification, immediately prior to the transfer to the 'held for sale' classification, the asset had: a cost of $100 000, accumulated depreciation of $40 000(10% per annum, straight line over 4 years); and accumulated impairment losses in terms of IAS 36 of $15 000. The asset was then impaired in terms of IFRS 5 by $10 000. Asume that the above asset had not yet been sold at the end of the following reporting date, at which point its fair value less cost to sell was $75 000. a) impairment loss reversal will be $15 000. b) impairment loss reversal will be $25 000. c) impaiment loss reversal will be $40 000. d) impairment loss reversal will be $10 000.
In: Accounting
In: Nursing
- hierarchical or
partitional
- overlapping or non-overlapping
- fuzzy or crisp
- complete or incomplete
Note: Each part should be labeled with four characteristics, e.g., partitional, overlapping, crisp, and incomplete. Also, if you feel there may be some ambiguity about what characteristics a grouping has, provide a short justification of your answer.
Case 1: The objects are the students in a class. There are groups for each official grade students received for the class.
Case 2: The objects are cities. There are groups of cities corresponding to various locations, namely, county (local region), state or province, and country.
Case 3: The objects are the applicants to a college. Each applicant is assigned a score from 0 to 10 indicating the likelihood/desirability of their admission. Even before any decisions have been made, the admissions personnel view the students as belonging to two groups: those that will be accepted and those that will be rejected.
In: Statistics and Probability
Enhanced or Reduced
Enhanced or Reduced
Enhanced or Reduced
Enhanced or Reduced
Enhanced or Reduced
Enhanced or Reduced
Enhanced or Reduced
Enhanced or Reduced
In: Biology
If a non-competitive inhibitor binds to E, is it possible that it also binds to ES in many cases? Group of answer choices
a. Yes
b. No
In: Biology
The three steps involved in the non-constant growth dividend
discount model are:
A. Step 1: Set the investment horizon (year H) as the future year
after which you expect the company's growth to settle down to a
stable rate.
B. Step 2: Forecast the stock price at the horizon, and discount it
also to give its present value today.
C. Step 1: Price estimated using the constant- growth formula to
value the dividends that will be paid after the horizon date.
D. Step 3: Sum the total present value of dividends plus the
present value of the ending stock price.
E. Step 2: Calculate the present value of dividends from the end of
investment till horizon year.
F. Step 3: Estimate the rate of return of the stock to compare it
with the price.
Choose the right three Steps in order.
In: Finance
. In the space to the right of each group write NV for non-vascular or SL for seedless vascular (1 point each). List the characteristics of the sporophytes in your drawings. In particular, note a) their colors and sizes of sporophytes b) the location and colors of the sporangia; c) the presence or absence of stomata; and d) type dependency between the sporophyte and gametophyte—explained. (total 60 points)
|
group (NV or SL?) |
a (2 points each) |
b (2 points each) |
c (2 points each) |
d (3 points each) |
|
mosses |
|
|
|
|
|
liverworts |
|
|
|
|
|
hornworts |
|
|
|
|
|
whisk ferns |
|
|
|
|
|
ground pine |
|
|
|
|
|
ferns |
|
|
|
|
In: Biology
Assignment Instructions:
1) The Factorial The factorial of a non-negative integer ??, denoted by ??!, is the product of all positive integers less than or equal to ??. The textbook has an example of a recursive MIPS implementation of factorial. Additionally, a simplified version of the MIPS assembly language recursive implementation of the factorial function is attached. Trace the factorial example carefully using QTSPIM
2) Recursive definition of multiplication The function ??????????(??, ??) for two positive integers 1 ? ??, and 1 ? ??, is defined as the following: ??????????(??, 1) = ??; ??????????(??, ??) = ?? + ??????????(??, ?? ? 1) Write a recursive version of ??????????() in C or C++ and a pseudo C program (based on chapter 2 in the book) then use these programs to develop a MIPS program that gets as input two integers 0 < ?? ? 255, and 0 < ?? ? 255, and returns the result of ??????????(??, ??) in $v1. Your deliverable should be the pseudo C and the assembly level function
Given code file:
#####################################################################################
# Functional Description: Main program to test Factorial function # Enter a negative number to terminate run
#####################################################################################
.data
.align 2
prompt: .asciiz "\n\n Give me a value for \"N\" : "
msg: .asciiz " N factorial is: "
bye: .asciiz " \n *** Good-Bye ***"
.text
main: addiu $sp, $sp, -8 #Allocate space
mloop:
li $v0, 4
la $a0, prompt
syscall
li $v0, 5 #Get value for N
syscall
bltz $v0, quit
sw $v0, 0 ($sp)
jal Fac # Call factorial
li $v0, 4 # Print message
la $a0, msg
syscall
lw $a0, 4($sp) #Get result
li $v0, 1
syscall #Print factorial
b mloop
quit:
addiu $sp, 8 # Deallocate space
li $v0, 4 la $a0, bye
syscall li $v0, 10
syscall
#####################################################################################
# Functional Description: Recursive Factorial Fac (N: in, N! :out)
#####################################################################################
Fac:
lw $a0, 0 ($sp)
bltz $a0, Problem
addi $t1, $a0, -13
bgtz $t1, Problem # 13 is largest value we can
# accept
addiu $sp, $sp, -16 # Allocate
sw $ra, 12 ($sp) # Save return address
sw $a0, 8($sp)
slti $t0, $a0, 2 # If N is 1 or 0, then return the value 1
beqz $t0, Go
li $v0, 1
b facret
Go:
addi $a0, $a0, -1 #
sw $a0, 0 ($sp) # Pass N-1 to factorial function
jal Fac # Recursive call
lw $v0, 4($sp) # Get (N-1) ! back.
lw $ra, 12 ($sp)
lw $a0, 8 ($sp)
mult $v0, $a0 # N* (N-1) !
mflo $v0
facret:
addiu $sp, $sp, 16 # Deallocate
sw $v0, 4 ($sp)
jr $ra
Problem:
sw $0, 4 ($sp)
jr $ra
Second give code file:
#####################################################################################
# Functional Description: Main program to test Factorial function # Enter a negative number to terminate run
#####################################################################################
.data
.align 2
.text
main: addiu $sp, $sp, -8 # Allocate space
mloop:
li $v0, 4 # Get value for N
sw $v0, 0 ($sp)
jal Fac # Call factorial
or $v1, $v0, $0
addiu $sp, 8 # Deallocate space
li $v0, 10
syscall
#####################################################################################
# Functional Description: Recursive Factorial Fac (N: in, N! :out)
#####################################################################################
Fac:
lw $a0, 0 ($sp)
addiu $sp, $sp, -16 # Allocate
sw $ra, 12 ($sp) # Save return address
sw $a0, 8($sp)
slti $t0, $a0, 2 # If N is 1 or 0, then return the value 1
eqz $t0, Go
li $v0, 1
b facret
Go:
addi $a0, $a0, -1 #
sw $a0, 0 ($sp) # Pass N-1 to factorial function
jal Fac # Recursive call
lw $v0, 4($sp) # Get (N-1) ! back.
lw $ra, 12 ($sp)
lw $a0, 8 ($sp)
mult $v0, $a0 # N* (N-1) !
mflo $v0
facret:
addiu $sp, $sp, 16 # Deallocate
sw $v0, 4 ($sp)
jr $ra
In: Electrical Engineering