A box contains N identical gas molecules equally divided between its two halves. For
N = 30,
what are the following?
(a) the multiplicity W of the central
configuration
(b) the total number of microstates
(c) the percentage of the time the system spends in the central
configuration
%
For
N = 52,
what are the following?
(d) W of the central configuration
(e) the total number of microstates
(f) the percentage of the time the system spends in the central
configuration
%
For
N = 80,
what are the following?
(g) W of the central configuration
(h) the total number of microstates
(i) the percentage of the time the system spends in the central
configuration
%
(j) Does the time spent in the central configuration increase or
decrease with an increase in N?
In: Physics
Assume you purchased a share of stock in Verizon communications at the beginning of 2017 for
$77.0077.00.
A year later the stock was worth
$78.1578.15 ,
but during 2017 it paid a dividend of
$5.165.16.
Calculate the following:
a. Income.
b. Capital gain (or loss).
c. Total return
(1) In dollars.
(2) As a percentage of the initial investment.
a. The current income received is
$nothing.
(Round to the nearest cent.)b. The capital gain (or loss) is
$nothing.
(Enter a loss as a negative number and round to the nearest cent.)c. (1) The total return in dollars is
$nothing.
(Round to the nearest cent.) (2) The total return as a percentage of the initial investment is
nothing %.
(Enter as a percentage and round to two decimal places.)
In: Finance
According to a poll on consumer behavior, 36% of people say they will only consider cars manufactured in their country when purchasing a new car. Suppose you select a random sample of 100 respondents. Complete parts (a) through (c) below.
a. What is the probability that the sample will have between 35% and 45% who say they will consider only cars manufactured by a company in their country when purchasing a new car? The probability is 0.5521. (Round to four decimal places as needed.)
b. The probability is 80% that the sample will be contained within what symmetrical limits of the population percentage? The probability is 80% that the sample percentage will be contained above 29.8% and below 42.2%. (Round to one decimal place as needed.)
c. The probability is 68% that the sample will be contained within what symmetrical limits of the population percentage? The probability is 68% that the sample percentage will be contained above 31.2% and below 40.8%. (Round to one decimal place as needed.)
How to solve in excel I already have answers but dont know how to do on excel.
In: Statistics and Probability
|
Both Bond Sam and Bond Dave have 10 percent coupons, make semiannual payments, and are priced at par value. Bond Sam has 3 years to maturity, whereas Bond Dave has 17 years to maturity. (Do not round your intermediate calculations.) |
| Requirement 1: |
| (a) | If interest rates suddenly rise by 4 percent, what is the percentage change in the price of Bond Sam? |
| (Click to select)9.78% -10.54% -9.51% 10.85% -9.53% |
| (b) | If interest rates suddenly rise by 4 percent, what is the percentage change in the price of Bond Dave? |
| (Click to select)42.28% -25.71% 29.71% -34.60% -25.69% |
| Requirement 2: |
| (a) |
If rates were to suddenly fall by 4 percent instead, what would the percentage change in the price of Bond Sam be then? |
| (Click to select)9.78% 10.88% 10.81% 10.83% -9.48% |
| (b) |
If rates were to suddenly fall by 4 percent instead, what would the percentage change in the price of Bond Dave be then? |
| (Click to select)42.24 % 42.26% 42.31% -25.66% 29.71% |
In: Finance
|
Both Bond Sam and Bond Dave have 9 percent coupons, make semiannual payments, and are priced at par value. Bond Sam has 4 years to maturity, whereas Bond Dave has 18 years to maturity. (Do not round your intermediate calculations.) |
| Requirement 1: |
| (a) | If interest rates suddenly rise by 5 percent, what is the percentage change in the price of Bond Sam? |
| (Click to select) -14.93% 18.33% 15.48% -17.55% -14.91% |
| (b) | If interest rates suddenly rise by 5 percent, what is the percentage change in the price of Bond Dave? |
| (Click to select) -48.34% -32.57% 38.92% -32.59% 63.74% |
| Requirement 2: |
| (a) |
If rates were to suddenly fall by 5 percent instead, what would the percentage change in the price of Bond Sam be then? |
| (Click to select) 18.36% 18.31% -14.88% 15.48% 18.29% |
| (b) |
If rates were to suddenly fall by 5 percent instead, what would the percentage change in the price of Bond Dave be then? |
| (Click to select) 63.72% 63.77% -32.54% 38.92% 63.70% |
In: Finance
|
Bond J has a coupon rate of 5 percent. Bond K has a coupon rate of 8 percent. Both bonds have 10 years to maturity, make semiannual payments, and have a YTM of 7 percent. |
| If interest rates suddenly rise by 2 percent, what is the percentage price change of Bond J? | |
|
| If interest rates suddenly rise by 2 percent, what is the percentage price change of Bond K? | |
|
| If interest rates suddenly fall by 2 percent, what is the percentage price change of Bond J? | |
|
| If interest rates suddenly fall by 2 percent, what is the percentage price change of Bond K? | |
|
Could you please try to solve this by explaining this process. (NOT IN EXCEL ) As I am trying to solve using Financial calculator so would be helpful If I could see the value to input in calculator. Appreciate it
In: Finance
33) Price elasticity of demand is defined as:
A) the amount by which demand exceeds supply
B) the extent to which quantity demanded responds to a change in
price
C) the extent to which price responds to a change in quantity
demanded
D) the difference between the highest and lowest price people are
willing to pay for a commodity
34) Price elasticity of demand is measured by:
A) the change in price divided by the change in quantity
B) the change in quantity demanded divided by the change in
price
C) the percentage change in quantity demanded divided by the
percentage change in price
D) the percentage change in price divided by the percentage change
in quantity demanded
35) The coefficient of elasticity of demand is the value used to
determine:
A) the elasticity of products
B) the degree of price variability for goods with inelastic
demand
C) the degree of elasticity of demand for a product
D) the degree of price variability for goods with elastic
demand
36) The formula for price elasticity of demand is:
A) ΔP/ΔQ
B) %ΔQ/%ΔP
C) %ΔP/%ΔQ
D) ΔQ/ΔP
In: Economics
A 14.55-year maturity zero-coupon bond selling at a yield to
maturity of 7% (effective annual yield) has convexity of 197.7 and
modified duration of 13.60 years. A 40-year maturity 5% coupon bond
making annual coupon payments also selling at a yield to maturity
of 7% has nearly identical modified duration—-13.96 years—but
considerably higher convexity of 338.8.
a. Suppose the yield to maturity on both bonds increases to 8%.
(Do not round intermediate calculations. Round your answers to 2 decimal places.)
b. Suppose the yield to maturity on both bonds
decreases to 6%. What will be the actual percentage capital gain on
each bond? What percentage capital gain would be predicted by the
duration-with-convexity rule? (Do not round intermediate
calculations. Round your answers to 2 decimal
places.)
In: Finance
A European growth mutual fund specializes in stocks from the British Isles, continental Europe, and Scandinavia. The fund has over 250 stocks. Let x be a random variable that represents the monthly percentage return for this fund. Suppose x has mean μ = 1.4% and standard deviation σ = 1%.
(b) After 9 months, what is the probability that the
average monthly percentage return x will be
between 1% and 2%? (Round your answer to four decimal
places.)
(c) After 18 months, what is the probability that the
average monthly percentage return x will be
between 1% and 2%? (Round your answer to four decimal places.)
(e) If after 18 months the average monthly percentage return
x is more than 2%, would that tend to shake your
confidence in the statement that μ = 1.4%? If this
happened, do you think the European stock market might be heating
up? (Round your answer to four decimal places.)
P(x > 2%) =
In: Statistics and Probability
7. The Supplemental Assistance Nutritional Program is the name for the federal government Food stamp program. At the end of the year 2014 the national statistics were staggering of 114 million households, 23 million were receiving food stamps. Social scientists wish to know if the percentage of California households receiving food stamps is the same as that of Florida. Random samples of 1,000 households are obtained for California and Florida and the number of households receiving food stamps is 180 and 150, respectively.
a. Find the percentage of households in the sample receiving food stamps for California and Florida.
b. Test the hypothesis that the "percentage of households receiving food stamps is the same in California as it is in Florida". Write the appropriate null and alternative hypotheses and use a significance level of 0.05. Make sure to give a decision and write a conclusion.
c. Compute the 95% Confidence Interval for the difference in the percentage of households receiving food stamps in California and Florida.
d. Does the Confidence Interval computed in part c agree with your decision in part b? Answer Yes or No and explain.
In: Statistics and Probability