Questions
Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...

Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 42.5 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit 126.9 Incorrect: Your answer is incorrect. upper limit 150.1 Incorrect: Your answer is incorrect. margin of error 11.6 Incorrect: Your answer is incorrect. (b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit 124.6 Incorrect: Your answer is incorrect. upper limit 152.4 Incorrect: Your answer is incorrect. margin of error 13.9 Incorrect: Your answer is incorrect. (c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit 120.3 Incorrect: Your answer is incorrect. upper limit 156.7 Incorrect: Your answer is incorrect. margin of error 18.2 Incorrect: Your answer is incorrect.

In: Statistics and Probability

Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...

Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 41.9 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit

upper limit

margin of error

(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit

upper limit

margin of error

(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit

upper limit

margin of error

(d) Compare the margins of error for parts (a) through (c). As the confidence levels increase, do the margins of error increase? As the confidence level increases, the margin of error increases. As the confidence level increases, the margin of error decreases. As the confidence level increases, the margin of error remains the same.

(e) Compare the lengths of the confidence intervals for parts (a) through (c). As the confidence levels increase, do the confidence intervals increase in length?

As the confidence level increases, the confidence interval increases in length.

As the confidence level increases, the confidence interval remains the same length.

As the confidence level increases, the confidence interval decreases in length.

In: Statistics and Probability

Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...

Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 40.5 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    

In: Statistics and Probability

Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...

Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 43.1 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    

In: Statistics and Probability

Question 1:- Application A solar photovoltaic (PV) power system was installed outdoor near your house. The...

Question 1:-

Application

A solar photovoltaic (PV) power system was installed outdoor near your house. The objective is to study the environmental effects ( Temp, Humidity, Dust, Wind….) on the PV panels total generated electric power. The environmental data should be acquired and monitored from a remote center in your house ( YOUR TASK IS NOT TO MEASURE PV OUTPUT POWER )

Tasks

To design a measurement system to meet the application requirement. Assume the availability of the following six sensors: Temperature, humidity, dust, light, solar radiation and winds speed\direction

A) Develop a feasible design : draw the measurement system block diagram and describe the function of all needed subsystems

Please drow the block diagram on computer, if not, write it clearly please.

In: Electrical Engineering

Shelly Herzog opens a research service near a college campus. She names the corporation Herzog Researchers,...

Shelly Herzog opens a research service near a college campus. She names the corporation Herzog Researchers, Inc. During the first month of operations, July 20X3, the business engages in the following transactions:

a. Herzog Researchers, Inc., issues its common stock to Shelly Herzog, who invests $25,000 to open the business.

b. The company purchases on account office supplies costing $350.

c. Herzog Researchers pays cash of $20,000 to acquire a lot next to the campus. The company intends to use the land as a building site for a business office.

d. Herzog Researchers performs research for clients and receives cash of $1,900.

e. Herzog Researchers pays $100 on the account payable it created in transaction b.

f. Herzog pays $2,000 of personal funds for a vacation.

g. Herzog Researchers pays cash expenses for office rent ($400) and utilities ($100).

h. The business sells a small parcel of the land for its cost of $5,000.

i. The business declares and pays a cash dividend of $1,200.

Required

1. Analyze the preceding transactions in terms of their effects on the accounting equation of Herzog Researchers, Inc. Use Exhibit 2-1, Panel B as a guide.

2. Prepare the income statement, statement of retained earnings, and balance sheet of Herzog Researchers, Inc., after recording the transactions. Draw arrows linking the statements.

In: Accounting

Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...

Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that ? is known to be 41.3 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    

In: Statistics and Probability

1. Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x =...

1. Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 40.9 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(d) Compare the margins of error for parts (a) through (c). As the confidence levels increase, do the margins of error increase?

As the confidence level increases, the margin of error decreases.

As the confidence level increases, the margin of error increases.    

As the confidence level increases, the margin of error remains the same.


(e) Compare the lengths of the confidence intervals for parts (a) through (c). As the confidence levels increase, do the confidence intervals increase in length?

As the confidence level increases, the confidence interval decreases in length.

As the confidence level increases, the confidence interval increases in length.    

As the confidence level increases, the confidence interval remains the same length.

2. Total plasma volume is important in determining the required plasma component in blood replacement therapy for a person undergoing surgery. Plasma volume is influenced by the overall health and physical activity of an individual. Suppose that a random sample of 40 male firefighters are tested and that they have a plasma volume sample mean of x = 37.5 ml/kg (milliliters plasma per kilogram body weight). Assume that σ = 7.50 ml/kg for the distribution of blood plasma.

(a) Find a 99% confidence interval for the population mean blood plasma volume in male firefighters. What is the margin of error? (Round your answers to two decimal places.)

lower limit    
upper limit    
margin of error    


(b) What conditions are necessary for your calculations? (Select all that apply.)

n is large

the distribution of weights is normal

σ is known

σ is unknown

the distribution of weights is uniform



(c) Interpret your results in the context of this problem.

1% of the intervals created using this method will contain the true average blood plasma volume in male firefighters.

The probability that this interval contains the true average blood plasma volume in male firefighters is 0.99.   

The probability that this interval contains the true average blood plasma volume in male firefighters is 0.01.

99% of the intervals created using this method will contain the true average blood plasma volume in male firefighters.


(d) Find the sample size necessary for a 99% confidence level with maximal margin of error E = 2.70 for the mean plasma volume in male firefighters. (Round up to the nearest whole number.)
_____ male firefighters

3. Allen's hummingbird (Selasphorus sasin) has been studied by zoologist Bill Alther.† Suppose a small group of 10 Allen's hummingbirds has been under study in Arizona. The average weight for these birds is x = 3.15 grams. Based on previous studies, we can assume that the weights of Allen's hummingbirds have a normal distribution, with σ = 0.32 gram.

(a) Find an 80% confidence interval for the average weights of Allen's hummingbirds in the study region. What is the margin of error? (Round your answers to two decimal places.)

lower limit    
upper limit    
margin of error    


(b) What conditions are necessary for your calculations? (Select all that apply.)

n is large

uniform distribution of weights

σ is known

normal distribution of weights

σ is unknown



(c) Interpret your results in the context of this problem.

The probability to the true average weight of Allen's hummingbirds is equal to the sample mean.

The probability that this interval contains the true average weight of Allen's hummingbirds is 0.80.    

There is a 20% chance that the interval is one of the intervals containing the true average weight of Allen's hummingbirds in this region.

There is an 80% chance that the interval is one of the intervals containing the true average weight of Allen's hummingbirds in this region.

The probability that this interval contains the true average weight of Allen's hummingbirds is 0.20.


(d) Find the sample size necessary for an 80% confidence level with a maximal margin of error E = 0.14 for the mean weights of the hummingbirds. (Round up to the nearest whole number.)
hummingbirds

In: Statistics and Probability

5) Thirty-five small communities in Connecticut (population near 10,000 each) gave an average of x =...

5) Thirty-five small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 44.9 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit upper limit margin of error (b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit upper limit margin of error (c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit upper limit margin of error (d) Compare the margins of error for parts (a) through (c). As the confidence levels increase, do the margins of error increase? As the confidence level increases, the margin of error increases. As the confidence level increases, the margin of error remains the same. As the confidence level increases, the margin of error decreases. (e) Compare the lengths of the confidence intervals for parts (a) through (c). As the confidence levels increase, do the confidence intervals increase in length? As the confidence level increases, the confidence interval increases in length. As the confidence level increases, the confidence interval remains the same length. As the confidence level increases, the confidence interval decreases in length.

In: Statistics and Probability

1) The Bay of Fundy-Passamaquoddy area near the border between Maine and New Brunswick/Nova Scotia in...

1) The Bay of Fundy-Passamaquoddy area near the border between Maine and New Brunswick/Nova Scotia in Canada, is another prime site for tidal power. The basin area is 700km2 and the average tidal range is 10.8 meters. Calculate the theoretical maximum power generating capability and the estimated realistic power available from this site. (SHOW your WORK)

2) A client wants you to design a roof-mounted solar water heater to supplement the energy input to their radiant floor heating system. They would like to have an indirect solar collection system similar to the one shown in Figure 11.16 of your textbook. The south-facing solar collector has a stated efficiency of 41%, and will be used to INDIRECTLY heat water in a supplemental storage tank that has a capacity of 150 Liters (~ 40 gallons). The circulating pump will operate at the rate of 20 x 10-6 m3/sec. On a typical summer day, there are 5.6 hours of direct sunshine, which creates a 15.5°C temperature rise in the solar collector fluid for that whole time period. Assume the collector fluid is water (heat capacity of 4.184 J/g-°C). What will be the increase in temperature of the water in the storage tank?

In: Mechanical Engineering