4. University of Notre Dame is a premier institution that draws students from all over the world to its campus. Although it is privately funded, it aspires to world-class quality and reputation, which are enhanced when out-of-state residents enroll. Data suggest that in-state enrollment can be described by the equation:
QI = 25,000 - PI,
where QI = in-state enrollment and PI = in-state tuition. Out-of-state enrollment is given
by: QN = 13,500 - .5PN.
In: Economics
If you were a worker member of a union involved in collective bargaining for a new labor contract with management, and the union representatives and management representatives could not agree and were at an impasse, and your union representatives held a meeting of all the workers, including you, and presented the option to the workers to go on strike, discuss all of your concerns, both pro and con, as to whether you would vote to go on strike or to not go on strike.What measures can an employer take to prepare for a possibility of a strike?What are the pros and cons a worker faces today as to whether or he/she should join a union? Discuss in some detail the options of a strike, a lockout, a work slowdown, and a contract provision for the use of arbitration.
In: Operations Management
Linux operation
1. Explain what this command does: rpm –qai | more ..... ?
2. Ps – Af |grep -v ^root, Explain how this command to find application processes could helpful in the real world to the system administrator??
3. Clearly describe 3 valid command options, and their meaning, of this command used to add users?
4. List 2 different variants of the Unix (not Linux) operating system, as well as their corresponding vendor (the company that developed them) ?
Determine if the UP ARROW for the recalling of commands in the BASH shell is persistent across logins. In other words, are previous commands preserved and able to be recalled by UP ARROW from one login to the next, using the same login account? (yes or no) 27.) .
If yes, clearly explain in detail why/how the BASH shell recalls these commands. Provide the technical answer as to what the shell uses to perform this action. Do not provide an answer which details how the user recalls the commands by just hitting the up arrow for example, but rather again, how the shell does this from a technical perspective, what it uses, etc. (Research if necessary):
28.) .
(If you have problems recalling previous commands with UP ARROW, ensure you are in the BASH shell when using UP ARROW, by running echo $SHELL, and it should display /bin/bash). We will see more about “variables”, like SHELL later in the course.
In: Computer Science
For Plant Physiology.
Explain the following statement: “There is a fitness cost associated with an enhanced defense response.” In your answer you must do the following: A) Provide your opinion about what this statement means to you. B) Include and describe the experimental evidence that supports your opinion.
In: Biology
one page
find an article that relates to GDP or any components of GDP. This includes consumption (consumer spending); investment (business investment or new houses); government purchases; or net exports.
In: Economics
2. (This question is about your reading of Piketty’s (2014)
Introduction of Capital in the Twenty First Century.)
2.1. Explain the theory of the “Kuznets Curve”.
2.2. According to Piketty, income and wealth inequalities can be
attributed to what he calls the “fundamental inequality”. Explain
this fundamental inequality and how it helps to explain rising
income and wealth inequalities.
In: Economics
Web Programming:
Explain how a session actually works in PHP, including how the client and server use the session ID to identify the session
Then, compare and contrast cookies and sessions as a means of storing state information for a given user.
Thank you
In: Computer Science
Kenneth, a Malaysian citizen was operating a restaurant in Japan since 1998. During
the period 1998 to 2006, Kenneth was never in Malaysia. Since 2007, Kenneth have
been returning to Malaysia frequently to attend to some family affairs and it was established that Kenneth was a Malaysian tax resident for the basis years 2007 to 2009.
In 2014, Kenneth sold his restaurant in Japan. He was recruited into the Malaysian Civil Service at the Ministry of Foreign Affairs from 01 November 2013. He was posted to the Malaysian Embassy in Tokyo from 01 December 2013.
Kenneth left for Tokyo on 29 November 2013 and reported for duty on 01 December 2013. Since then Kenneth has never been back to Malaysia.
Below are the patterns of Kenneth’s duration of stay in Malaysia since 2010:
01 March 2010 to 31 March 2010
01 May 2011 to 31 January 2012
01 April 2013 to 15 May 2013
01 October 2013 to 28 November 2013
During the period Kenneth was not in Malaysia, he was in Japan.
Required:
For the purposes of Malaysian income tax, determine Kenneth’s residence status for the basis years 2010 to 2014.
Support your answers with reasons and citing the relevant provision of the Income Tax Act 1967 that is applicable for a particular year of assessment and also explain why certain sub-sections of section 7(1) are not applicable for any particular year of assessment.
P/S : THE ANSWER WILL BE IN TABLE . EXAMPLE WILL BE IN THE BELOW . THANK YOU~
|
Year |
Total days present in Malaysia |
Status RESIDENT OR NON RESIDENT |
Section Section 7(1)(A),Section 7(1)(B), Section 7(1)(C) |
Explanation |
|
2014 |
181 Days |
Non resident |
Section 7(1)(A) |
Renuka is not considered as the resident of Malaysia for tax purposes as she had lived in Malaysia for 181 days only in 2014. |
THANK YOU SO MUCH FOR YOUR HELP .
In: Accounting
You should make original posts discussing any three of the following statements. You are also required to post at least three responses to other student’s posts. Please note that this is a minimum requirement. Your grade will be a function of your effort. Please answer any three question. Thank you
1. If you were able to put together a portfolio that completely eliminated all risk, what return would you expect to earn and why?
2. If someone called you and told you that he/she could guarantee you high returns on your investments with little or no risk, what would you do and why.
3. When there is uncertainty in the marketplace, what happens to yield spreads and why?
4. Your grandfather has great faith in bonds and has heard about some “high yield bonds” that are available. He has asked you for your opinion. What advice will you give him?
5. Why do venture capital companies often choose preferred stock for their equity position?
6. Explain how supply and demand influences the price of common stock.
7. A company has a vacant building on its property that is completely depreciated and it proposes to use it for an expansion project. What cost if any, should it use for that building?
8. How does the use of accelerated depreciation encourage investment?
In: Finance
This question is based on a Poisson discrete probability distribution. The distribution is important in biology and medicine, and can be dealt with in the same way as any other discrete distribution. Red blood cell deficiency may be determined by examining a specimen of blood under the microscope. The data in Table B gives a hypothetical distribution of numbers of red blood cells in a certain small fixed volume of blood from normal patients. Theoretically, there is no upper limit to the value of a POISSON distribution. In reality, you can force only so many red blood cells into a given volume. Copy the data from Table B into columns of the EXCEL worksheet, name the columns, and view the table.]
| 0 | 0.00000 |
| 1 | 0.00000 |
| 2 | 0.00000 |
| 3 | 0.00001 |
| 4 | 0.00002 |
| 5 | 0.00010 |
| 6 | 0.00031 |
| 7 | 0.00085 |
| 8 | 0.00204 |
| 9 | 0.00435 |
| 10 | 0.00839 |
| 11 | 0.01468 |
| 12 | 0.02355 |
| 13 | 0.03488 |
| 14 | 0.04797 |
| 15 | 0.06157 |
| 16 | 0.07410 |
| 17 | 0.08392 |
| 18 | 0.08977 |
| 19 | 0.09097 |
| 20 | 0.08758 |
| 21 | 0.08030 |
| 22 | 0.07027 |
| 23 | 0.05883 |
| 24 | 0.04720 |
| 25 | 0.03635 |
| 26 | 0.02692 |
| 27 | 0.01920 |
| 28 | 0.01320 |
| 29 | 0.00876 |
| 30 | 0.00562 |
| 31 | 0.00349 |
| 32 | 0.00210 |
| 33 | 0.00123 |
| 34 | 0.00069 |
| 35 | 0.00038 |
| 36 | 0.00020 |
| 37 | 0.00011 |
| 38 | 0.00005 |
| 39 | 0.00003 |
| 40 | 0.00001 |
| 41 | 0.00001 |
| 42 | 0.00000 |
| 43 | 0.00000 |
| 44 | 0.00000 |
| 45 | 0.00000 |
| 46 | 0.00000 |
| 47 | 0.00000 |
| 48 | 0.00000 |
| 49 | 0.00000 |
| 50 | 0.00000 |
| 51 | 0.00000 |
| 52 | 0.00000 |
| 53 | 0.00000 |
| 54 | 0.00000 |
| 55 | 0.00000 |
| 56 | 0.00000 |
| 57 | 0.00000 |
| 58 | 0.00000 |
| 59 | 0.00000 |
| 60 | 0.00000 |
| 61 | 0.00000 |
| 62 | 0.00000 |
| 63 | 0.00000 |
| 64 | 0.00000 |
| 65 | 0.00000 |
| 66 | 0.00000 |
| 67 | 0.00000 |
| 68 | 0.00000 |
| 69 | 0.00000 |
| 70 | 0.00000 |
| 71 | 0.00000 |
| 72 | 0.00000 |
| 73 | 0.00000 |
| 74 | 0.00000 |
| 75 | 0.00000 |
| 76 | 0.00000 |
| 77 | 0.00000 |
| 78 | 0.00000 |
| 79 | 0.00000 |
| 80 | 0.00000 |
| 81 | 0.00000 |
| 82 | 0.00000 |
| 83 | 0.00000 |
| 84 | 0.00000 |
| 85 | 0.00000 |
| 86 | 0.00000 |
| 87 | 0.00000 |
| 88 | 0.00000 |
| 89 | 0.00000 |
| 90 | 0.00000 |
| 91 | 0.00000 |
| 92 | 0.00000 |
| 93 | 0.00000 |
| 94 | 0.00000 |
| 95 | 0.00000 |
| 96 | 0.00000 |
| 97 | 0.00000 |
| 98 | 0.00000 |
| 99 | 0.00000 |
| 100 | 0.00000 |
8. What is the probability that a blood sample from this distribution will have exactly 20 red blood cells?
9. What is the probability that a blood sample from a normal person will have between 19 and 26 red blood cells? HINT: See questions 3 and 4.
10. What is the probability that a blood sample from a normal person would have fewer than 10 red blood cells?
11. What is the probability that a blood sample from a normal person will have at least 15 red blood cells? HINT: Since there is no theoretical upper limit to the Poisson distribution, the correct way to answer this question is to calculate 1 – probability of fewer than 15 red blood cells. ASSIGNMENT 3 20 INTRODUCTORY STATISTICS LABORATORY
12. A person with a red blood cell count in the lower 2.5 percent of the distribution might be considered as deficient. What is the red blood cell count below which 2.5 percent of the distribution lies? HINT: You need to determine a value X so that if you sum all the probabilities for counts up to and including that value they will sum to at least 0.025. The sum of probabilities of all counts up to but excluding X should be less than 0.025. You can proceed in the following way. Look at the table to guess how many probabilities (P[X = 0] + P[X = 1] + . . ) should be added to give a sum of approximately 0.025. Calculate sums of probabilities for your guess of X. Continue your guessing of X until you get a sum ≥ 0.025 while the sum for X-1 < 0.025.
13. What is the mean red blood cell count in this distribution?
14. What is the variance of red blood cell count in this distribution? HINT: See question 7, and remember it is a Poisson distribution.
15. Is the following statement true (1) or false (0) for this distribution? In a Poisson distribution, the variance is equal to the mean (within rounding error). Record 1 if true, 0 if false.
In: Math