How many N2 molecules in your next breath were present in Julius Caesar’s last breath (died in 44 BC, March 15 in Rome)?
a) First find the probability of the N2 in Caesar’s last breath still being present in the atmosphere.
b) For simplicity, assume 1 breath = 1 Liter . How many N2 molecules in your next breath were present in Julius
Caesar’s last breath?
In: Chemistry
Given the attached data. Answer the following questions for a 6 period moving average.
MAD = Average(|A-F|)
TS =SUM(A-F)/MAD
MSE = Average(A-F)2
1. Compute your forecast for period 51.
The potential answers are:
A: 4414 units.
B: 10290.67 units.
C: 8020.83 units.
D: 6324.8 units.
E: 6351.86 units.
2. Compute the MAD value for period 50.
The potential answers are:
A: 2655.35 units.
B: 3753.86 units.
C: 3892.54 units.
D: 3732.56 units.
E: 3205.7 units.
3. Compute standard deviation of forecast for period 51.
The potential answers are:
A: 3319 units.
B: 4666 units.
C: 4866 units.
D: 2660 units.
E: 4007 units.
4. Compute the TS value for period 50.
The potential answers are:
A: -5.8.
B: 2.5.
C: -0.7.
D: -0.2.
E: -1.3.
5. Compute the MSE value for period 50. The potential answers are:
A: 9474272 units.
B: 18872575 units.
C: 20380735 units.
D: 6274108 units.
E: 13546074 units.
6. Compute the standard deviation of demand for period 51 using MSE.
The potential answers are:
A: 4515 units.
B: 4344 units.
C: 4657 units.
D: 2505 units.
E: 3680 units.
(Excel attached data below)
| t | At | |
| 1 | 2751 | |
| 2 | 6581 | |
| 3 | 10658 | |
| 4 | 5446 | |
| 5 | 8684 | |
| 6 | 12896 | |
| 7 | 7653 | |
| 8 | 5910 | |
| 9 | 10607 | |
| 10 | 15010 | |
| 11 | 11235 | |
| 12 | 3866 | |
| 13 | 9190 | |
| 14 | 4794 | |
| 15 | 6408 | |
| 16 | 4996 | |
| 17 | 12029 | |
| 18 | 13516 | |
| 19 | 8039 | |
| 20 | 10187 | |
| 21 | 13176 | |
| 22 | 8070 | |
| 23 | 5060 | |
| 24 | 10542 | |
| 25 | 3125 | |
| 26 | 10977 | |
| 27 | 13051 | |
| 28 | 7688 | |
| 29 | 16220 | |
| 30 | 5333 | |
| 31 | 3812 | |
| 32 | 2561 | |
| 33 | 9289 | |
| 34 | 5794 | |
| 35 | 7534 | |
| 36 | 8041 | |
| 37 | 2620 | |
| 38 | 1791 | |
| 39 | 13253 | |
| 40 | 4714 | |
| 41 | 7206 | |
| 42 | 14435 | |
| 43 | 2809 | |
| 44 | 18193 | |
| 45 | 11674 | |
| 46 | 4850 | |
| 47 | 4441 | |
| 48 | 9661 | |
| 49 | 4311 | |
| 50 | 13188 |
In: Operations Management
remove(30);
find(50):
insert(7, 3):
findKth(4)
sum = 0;
for( i = 0; i < n; i++ )
for( j = 0; j < n; j++ )
for( k = 0; k < n; k++ )
sum++;
In: Computer Science
Seasonal affective disorder (SAD) is a type of depression during seasons with less daylight (e.g., winter months). One therapy for SAD is phototherapy, which is increased exposure to light used to improve mood. A researcher tests this therapy by exposing a sample of patients with SAD to different intensities of light (low, medium, high) in a light box, either in the morning or at night (these are the times thought to be most effective for light therapy). All participants rated their mood following this therapy on a scale from 1 (poor mood) to 9 (improved mood). The hypothetical results are given in the following table.
| Light Intensity | ||||
|---|---|---|---|---|
| Low | Medium | High | ||
| Time
of Day |
Morning | 5 | 5 | 7 |
| 6 | 6 | 8 | ||
| 4 | 3 | 6 | ||
| 7 | 7 | 9 | ||
| 5 | 9 | 5 | ||
| 6 | 8 | 8 | ||
| Night | 5 | 6 | 9 | |
| 8 | 8 | 7 | ||
| 6 | 7 | 6 | ||
| 6 | 5 | 8 | ||
| 4 | 9 | 7 | ||
| 3 | 8 | 6 | ||
(a) Complete the F-table and make a decision to retain or reject the null hypothesis for each hypothesis test. (Round your answers to two decimal places. Assume experimentwise alpha equal to 0.05.)
|
Source of Variation |
SS | df | MS | F |
|---|---|---|---|---|
| Time of day | ||||
| Intensity | ||||
| Time
of day × Intensity |
||||
| Error | ||||
| Total |
State the decision for the main effect of the time of day.
Retain the null hypothesis.Reject the null hypothesis.
State the decision for the main effect of intensity.
Retain the null hypothesis.Reject the null hypothesis.
State the decision for the interaction effect.
Retain the null hypothesis.Reject the null hypothesis.
(b) Compute Tukey's HSD to analyze the significant main effect.
The critical value is for each pairwise comparison.
Summarize the results for this test using APA format.
My SPSS stopped working and I am unable to complete my homework, help is appreciated!
In: Statistics and Probability
iminy’s Cricket Farm issued a bond with 15 years to maturity and a semiannual coupon rate of 4 percent 2 years ago. The bond currently sells for 91 percent of its face value. The company’s tax rate is 21 percent. The book value of the debt issue is $30 million. In addition, the company has a second debt issue on the market, a zero coupon bond with 7 years left to maturity; the book value of this issue is $20 million, and the bonds sell for 73 percent of par.
A. What is the company's total book value of debt?
B. What is the company's total market value of debt?
C. What is your best estimate of the aftertax cost of debt?
In: Finance
|
male |
1st Systolic |
1st Diastolic |
2nd Systolic |
2nd Diastolic |
|
1 |
132 |
74 |
132 |
82 |
|
2 |
108 |
70 |
108 |
74 |
|
3 |
124 |
78 |
134 |
78 |
|
4 |
116 |
42 |
116 |
48 |
|
5 |
118 |
76 |
116 |
70 |
|
6 |
128 |
80 |
128 |
80 |
|
7 |
132 |
90 |
130 |
92 |
|
8 |
106 |
64 |
110 |
64 |
|
female |
||||
|
1 |
168 |
46 |
156 |
52 |
|
2 |
198 |
82 |
192 |
84 |
|
3 |
110 |
74 |
110 |
76 |
|
4 |
170 |
94 |
168 |
100 |
|
5 |
142 |
58 |
140 |
52 |
|
6 |
168 |
52 |
172 |
54 |
|
7 |
90 |
32 |
82 |
0 |
For the above data, test the hypothesis that the first reading and the second reading each are greater than 115 mmHg, with an α of 0.05. (Here, combine men and women into one sample: you should have an N of 15) What test would be most appropriate and why? Is the result significant? State your conclusions.
In: Statistics and Probability
Use Tornadoes data and your statistical expertise to answer the questions: Is it reasonable to claim that on average October has less than four tornado-related deaths (per year)?
9. What test/procedure did you perform?
a. One-sided t-test
b. Two-sided t-test
c. Regression
d. Confidence interval
10. What is the P-value/margin of error?
a. 0.723595771
b. 1.8
c. 3.684118249
d. 1.10683165
e. None of these
11. Statistical Interpretation
a. Since the confidence interval of 3.68411 is below 4, we are confident that the number of tornado-related deaths is below 4.
b. Since the P-value is not small, we cannot claim that the number of tornado-related deaths is below 4.
c. Since confidence interval is above 4, we cannot claim that the number of tornado-related deaths is below 4.
d. None of these
12. Conclusion
a. Yes, I am confident that the above assertion is reasonable.
b. No, we cannot claim that the above assertion is reasonable.
| Tornadoes and Deaths by Year and Month (1950-1994) | ||||||||||||||||||||||||||
| Year | Total Tornadoes | Tornadoes by Month | Total Deaths | Deaths by Month | ||||||||||||||||||||||
| Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec | |||
| 1950 | 201 | 7 | 20 | 21 | 15 | 61 | 28 | 23 | 13 | 3 | 2 | 4 | 4 | 70 | 1 | 45 | 1 | 12 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 3 |
| 1951 | 260 | 2 | 10 | 6 | 26 | 57 | 76 | 23 | 27 | 9 | 2 | 12 | 10 | 34 | 0 | 1 | 0 | 2 | 7 | 9 | 5 | 0 | 8 | 0 | 1 | 1 |
| 1952 | 240 | 12 | 27 | 43 | 37 | 34 | 34 | 27 | 16 | 1 | 0 | 6 | 3 | 230 | 0 | 10 | 209 | 4 | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
| 1953 | 422 | 14 | 16 | 40 | 47 | 94 | 111 | 32 | 24 | 5 | 6 | 12 | 21 | 519 | 0 | 3 | 24 | 36 | 163 | 244 | 0 | 0 | 0 | 0 | 0 | 49 |
| 1954 | 550 | 2 | 17 | 62 | 113 | 101 | 107 | 45 | 49 | 21 | 14 | 2 | 17 | 36 | 0 | 2 | 10 | 2 | 9 | 5 | 0 | 1 | 3 | 2 | 0 | 2 |
| 1955 | 593 | 3 | 4 | 43 | 99 | 148 | 153 | 49 | 33 | 15 | 23 | 20 | 3 | 129 | 0 | 0 | 5 | 7 | 106 | 2 | 5 | 0 | 2 | 1 | 1 | 0 |
| 1956 | 504 | 2 | 47 | 31 | 85 | 79 | 65 | 92 | 42 | 16 | 29 | 7 | 9 | 83 | 0 | 8 | 1 | 67 | 4 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
| 1957 | 858 | 17 | 5 | 38 | 216 | 228 | 147 | 55 | 20 | 17 | 18 | 59 | 38 | 193 | 13 | 0 | 1 | 30 | 87 | 14 | 0 | 0 | 2 | 2 | 25 | 19 |
| 1958 | 564 | 11 | 20 | 15 | 76 | 68 | 128 | 121 | 46 | 24 | 9 | 45 | 1 | 67 | 0 | 13 | 0 | 4 | 0 | 43 | 1 | 1 | 1 | 4 | 0 | 0 |
| 1959 | 604 | 16 | 20 | 43 | 30 | 226 | 73 | 63 | 38 | 58 | 24 | 11 | 2 | 58 | 3 | 21 | 9 | 1 | 8 | 2 | 0 | 0 | 14 | 0 | 0 | 0 |
| 1960 | 616 | 9 | 28 | 28 | 70 | 201 | 125 | 42 | 48 | 21 | 18 | 25 | 1 | 46 | 0 | 0 | 0 | 7 | 34 | 3 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1961 | 697 | 1 | 31 | 124 | 74 | 137 | 107 | 77 | 27 | 53 | 14 | 36 | 16 | 52 | 0 | 0 | 7 | 4 | 23 | 2 | 0 | 0 | 15 | 0 | 1 | 0 |
| 1962 | 657 | 12 | 25 | 37 | 41 | 200 | 171 | 78 | 51 | 24 | 11 | 5 | 2 | 30 | 1 | 0 | 17 | 2 | 4 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
| 1963 | 463 | 15 | 6 | 48 | 84 | 71 | 90 | 62 | 26 | 33 | 13 | 15 | 0 | 31 | 1 | 0 | 8 | 16 | 1 | 0 | 0 | 2 | 3 | 0 | 0 | 0 |
| 1964 | 704 | 14 | 2 | 36 | 157 | 134 | 137 | 63 | 79 | 25 | 22 | 17 | 18 | 73 | 10 | 0 | 6 | 15 | 16 | 0 | 0 | 2 | 0 | 22 | 0 | 2 |
| 1965 | 897 | 21 | 32 | 34 | 123 | 273 | 147 | 85 | 61 | 64 | 16 | 34 | 7 | 301 | 0 | 0 | 2 | 268 | 17 | 7 | 0 | 1 | 0 | 1 | 5 | 0 |
| 1966 | 585 | 1 | 28 | 12 | 80 | 98 | 126 | 100 | 58 | 22 | 29 | 20 | 11 | 98 | 0 | 0 | 58 | 12 | 0 | 19 | 3 | 0 | 0 | 6 | 0 | 0 |
| 1967 | 926 | 39 | 8 | 42 | 149 | 116 | 210 | 90 | 28 | 139 | 36 | 8 | 61 | 114 | 7 | 0 | 3 | 73 | 3 | 6 | 1 | 2 | 5 | 4 | 0 | 10 |
| 1968 | 660 | 5 | 7 | 28 | 102 | 145 | 136 | 56 | 66 | 25 | 14 | 44 | 32 | 131 | 0 | 0 | 0 | 40 | 72 | 11 | 2 | 2 | 0 | 0 | 3 | 1 |
| 1969 | 608 | 3 | 5 | 8 | 68 | 145 | 137 | 98 | 70 | 20 | 26 | 5 | 23 | 66 | 32 | 0 | 1 | 2 | 4 | 7 | 0 | 19 | 0 | 0 | 0 | 1 |
| 1970 | 654 | 9 | 16 | 25 | 117 | 88 | 134 | 82 | 55 | 54 | 50 | 10 | 14 | 73 | 0 | 0 | 2 | 30 | 26 | 6 | 3 | 0 | 0 | 6 | 0 | 0 |
| 1971 | 889 | 19 | 83 | 40 | 75 | 166 | 199 | 100 | 50 | 47 | 38 | 16 | 56 | 159 | 1 | 134 | 2 | 11 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
| 1972 | 741 | 33 | 7 | 69 | 96 | 140 | 114 | 115 | 59 | 49 | 34 | 17 | 8 | 27 | 5 | 0 | 0 | 16 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 |
| 1973 | 1102 | 33 | 10 | 80 | 150 | 250 | 224 | 80 | 51 | 69 | 25 | 81 | 49 | 89 | 1 | 0 | 17 | 10 | 35 | 3 | 1 | 4 | 3 | 0 | 12 | 3 |
| 1974 | 945 | 24 | 23 | 36 | 267 | 144 | 194 | 59 | 107 | 25 | 45 | 13 | 8 | 366 | 2 | 0 | 1 | 317 | 10 | 31 | 0 | 0 | 0 | 5 | 0 | 0 |
| 1975 | 919 | 52 | 45 | 84 | 108 | 188 | 196 | 79 | 60 | 34 | 12 | 39 | 22 | 60 | 12 | 7 | 12 | 13 | 5 | 6 | 2 | 2 | 0 | 0 | 0 | 1 |
| 1976 | 834 | 12 | 36 | 180 | 113 | 155 | 169 | 84 | 38 | 35 | 11 | 0 | 1 | 44 | 0 | 5 | 21 | 1 | 8 | 3 | 2 | 1 | 3 | 0 | 0 | 0 |
| 1977 | 852 | 5 | 17 | 64 | 88 | 228 | 132 | 99 | 82 | 65 | 25 | 24 | 23 | 43 | 0 | 2 | 0 | 26 | 4 | 0 | 1 | 6 | 1 | 1 | 0 | 2 |
| 1978 | 789 | 23 | 7 | 17 | 107 | 213 | 148 | 143 | 65 | 20 | 7 | 9 | 30 | 53 | 2 | 0 | 0 | 4 | 7 | 17 | 11 | 1 | 6 | 0 | 0 | 5 |
| 1979 | 855 | 16 | 4 | 53 | 123 | 112 | 150 | 132 | 126 | 69 | 47 | 21 | 2 | 84 | 0 | 0 | 1 | 58 | 2 | 8 | 1 | 5 | 2 | 7 | 0 | 0 |
| 1980 | 866 | 5 | 11 | 41 | 137 | 203 | 217 | 95 | 73 | 37 | 43 | 3 | 1 | 28 | 0 | 0 | 2 | 4 | 8 | 7 | 5 | 0 | 1 | 1 | 0 | 0 |
| 1981 | 782 | 2 | 25 | 33 | 84 | 187 | 223 | 98 | 64 | 26 | 32 | 7 | 1 | 24 | 0 | 2 | 1 | 13 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1982 | 1047 | 18 | 3 | 60 | 150 | 329 | 196 | 95 | 34 | 38 | 9 | 19 | 96 | 64 | 1 | 0 | 6 | 30 | 14 | 4 | 0 | 0 | 2 | 0 | 0 | 7 |
| 1983 | 931 | 13 | 41 | 71 | 65 | 249 | 178 | 99 | 76 | 19 | 13 | 49 | 58 | 34 | 2 | 1 | 0 | 6 | 14 | 2 | 4 | 0 | 0 | 0 | 0 | 5 |
| 1984 | 907 | 1 | 27 | 73 | 176 | 169 | 242 | 72 | 47 | 17 | 49 | 30 | 4 | 122 | 0 | 0 | 64 | 33 | 6 | 14 | 0 | 0 | 0 | 4 | 1 | 0 |
| 1985 | 684 | 2 | 7 | 38 | 134 | 182 | 82 | 51 | 108 | 40 | 18 | 19 | 3 | 94 | 0 | 0 | 2 | 5 | 78 | 3 | 0 | 3 | 0 | 0 | 3 | 0 |
| 1986 | 765 | 0 | 30 | 76 | 84 | 173 | 134 | 88 | 67 | 65 | 26 | 17 | 5 | 15 | 0 | 2 | 6 | 2 | 1 | 0 | 3 | 1 | 0 | 0 | 0 | 0 |
| 1987 | 656 | 6 | 19 | 38 | 20 | 126 | 132 | 163 | 63 | 19 | 1 | 55 | 14 | 59 | 0 | 6 | 1 | 1 | 31 | 2 | 0 | 1 | 0 | 0 | 11 | 6 |
| 1988 | 702 | 17 | 4 | 28 | 58 | 132 | 63 | 103 | 61 | 76 | 19 | 121 | 20 | 32 | 5 | 0 | 1 | 4 | 3 | 0 | 0 | 3 | 1 | 0 | 14 | 1 |
| 1989 | 856 | 14 | 18 | 43 | 82 | 231 | 252 | 59 | 36 | 31 | 30 | 57 | 3 | 50 | 0 | 0 | 1 | 0 | 9 | 5 | 0 | 0 | 0 | 4 | 31 | 0 |
| 1990 | 1133 | 11 | 57 | 86 | 108 | 243 | 329 | 106 | 60 | 45 | 35 | 18 | 35 | 53 | 0 | 1 | 3 | 0 | 5 | 11 | 0 | 29 | 0 | 2 | 0 | 2 |
| 1991 | 1132 | 29 | 11 | 157 | 204 | 335 | 216 | 64 | 46 | 26 | 21 | 20 | 3 | 39 | 1 | 0 | 13 | 21 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| 1992 | 1297 | 15 | 29 | 55 | 53 | 137 | 399 | 213 | 115 | 81 | 34 | 146 | 20 | 39 | 0 | 0 | 5 | 0 | 0 | 1 | 0 | 3 | 0 | 4 | 26 | 0 |
| 1993 | 1173 | 17 | 34 | 48 | 85 | 177 | 313 | 242 | 112 | 65 | 55 | 19 | 6 | 33 | 0 | 3 | 5 | 10 | 2 | 1 | 0 | 6 | 2 | 4 | 0 | 0 |
| 1994 | 1082 | 13 | 9 | 58 | 205 | 161 | 234 | 155 | 120 | 30 | 51 | 42 | 4 | 69 | 0 | 0 | 40 | 12 | 0 | 3 | 3 | 4 | 0 | 0 | 7 | 0 |
In: Statistics and Probability
Use the Tornadoes data and your statistical expertise to answer the questions: Is it reasonable to claim that on average there are more than 45, tornado-related deaths in the month of April (per year)?
9. What test/procedure did you perform?
10. What is the P-Value/margin of error?
11. Statistical Interpretation
12. Conclusion
Paste content below in a text document and then open that text document with excel.
Tornadoes and Deaths by Year and Month (1950-1994)
Year Total Tornadoes Tornadoes by Month Total Deaths Deaths by Month
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
1950 201 7 20 21 15 61 28 23 13 3 2 4 4 70 1 45 1 12 2 6 0 0 0 0 0 3
1951 260 2 10 6 26 57 76 23 27 9 2 12 10 34 0 1 0 2 7 9 5 0 8 0 1 1
1952 240 12 27 43 37 34 34 27 16 1 0 6 3 230 0 10 209 4 2 2 2 1 0 0 0 0
1953 422 14 16 40 47 94 111 32 24 5 6 12 21 519 0 3 24 36 163 244 0 0 0 0 0 49
1954 550 2 17 62 113 101 107 45 49 21 14 2 17 36 0 2 10 2 9 5 0 1 3 2 0 2
1955 593 3 4 43 99 148 153 49 33 15 23 20 3 129 0 0 5 7 106 2 5 0 2 1 1 0
1956 504 2 47 31 85 79 65 92 42 16 29 7 9 83 0 8 1 67 4 0 1 2 0 0 0 0
1957 858 17 5 38 216 228 147 55 20 17 18 59 38 193 13 0 1 30 87 14 0 0 2 2 25 19
1958 564 11 20 15 76 68 128 121 46 24 9 45 1 67 0 13 0 4 0 43 1 1 1 4 0 0
1959 604 16 20 43 30 226 73 63 38 58 24 11 2 58 3 21 9 1 8 2 0 0 14 0 0 0
1960 616 9 28 28 70 201 125 42 48 21 18 25 1 46 0 0 0 7 34 3 0 1 0 1 0 0
1961 697 1 31 124 74 137 107 77 27 53 14 36 16 52 0 0 7 4 23 2 0 0 15 0 1 0
1962 657 12 25 37 41 200 171 78 51 24 11 5 2 30 1 0 17 2 4 0 0 6 0 0 0 0
1963 463 15 6 48 84 71 90 62 26 33 13 15 0 31 1 0 8 16 1 0 0 2 3 0 0 0
1964 704 14 2 36 157 134 137 63 79 25 22 17 18 73 10 0 6 15 16 0 0 2 0 22 0 2
1965 897 21 32 34 123 273 147 85 61 64 16 34 7 301 0 0 2 268 17 7 0 1 0 1 5 0
1966 585 1 28 12 80 98 126 100 58 22 29 20 11 98 0 0 58 12 0 19 3 0 0 6 0 0
1967 926 39 8 42 149 116 210 90 28 139 36 8 61 114 7 0 3 73 3 6 1 2 5 4 0 10
1968 660 5 7 28 102 145 136 56 66 25 14 44 32 131 0 0 0 40 72 11 2 2 0 0 3 1
1969 608 3 5 8 68 145 137 98 70 20 26 5 23 66 32 0 1 2 4 7 0 19 0 0 0 1
1970 654 9 16 25 117 88 134 82 55 54 50 10 14 73 0 0 2 30 26 6 3 0 0 6 0 0
1971 889 19 83 40 75 166 199 100 50 47 38 16 56 159 1 134 2 11 7 1 1 0 0 0 0 2
1972 741 33 7 69 96 140 114 115 59 49 34 17 8 27 5 0 0 16 0 2 0 2 0 0 2 0
1973 1102 33 10 80 150 250 224 80 51 69 25 81 49 89 1 0 17 10 35 3 1 4 3 0 12 3
1974 945 24 23 36 267 144 194 59 107 25 45 13 8 366 2 0 1 317 10 31 0 0 0 5 0 0
1975 919 52 45 84 108 188 196 79 60 34 12 39 22 60 12 7 12 13 5 6 2 2 0 0 0 1
1976 834 12 36 180 113 155 169 84 38 35 11 0 1 44 0 5 21 1 8 3 2 1 3 0 0 0
1977 852 5 17 64 88 228 132 99 82 65 25 24 23 43 0 2 0 26 4 0 1 6 1 1 0 2
1978 789 23 7 17 107 213 148 143 65 20 7 9 30 53 2 0 0 4 7 17 11 1 6 0 0 5
1979 855 16 4 53 123 112 150 132 126 69 47 21 2 84 0 0 1 58 2 8 1 5 2 7 0 0
1980 866 5 11 41 137 203 217 95 73 37 43 3 1 28 0 0 2 4 8 7 5 0 1 1 0 0
1981 782 2 25 33 84 187 223 98 64 26 32 7 1 24 0 2 1 13 0 8 0 0 0 0 0 0
1982 1047 18 3 60 150 329 196 95 34 38 9 19 96 64 1 0 6 30 14 4 0 0 2 0 0 7
1983 931 13 41 71 65 249 178 99 76 19 13 49 58 34 2 1 0 6 14 2 4 0 0 0 0 5
1984 907 1 27 73 176 169 242 72 47 17 49 30 4 122 0 0 64 33 6 14 0 0 0 4 1 0
1985 684 2 7 38 134 182 82 51 108 40 18 19 3 94 0 0 2 5 78 3 0 3 0 0 3 0
1986 765 0 30 76 84 173 134 88 67 65 26 17 5 15 0 2 6 2 1 0 3 1 0 0 0 0
1987 656 6 19 38 20 126 132 163 63 19 1 55 14 59 0 6 1 1 31 2 0 1 0 0 11 6
1988 702 17 4 28 58 132 63 103 61 76 19 121 20 32 5 0 1 4 3 0 0 3 1 0 14 1
1989 856 14 18 43 82 231 252 59 36 31 30 57 3 50 0 0 1 0 9 5 0 0 0 4 31 0
1990 1133 11 57 86 108 243 329 106 60 45 35 18 35 53 0 1 3 0 5 11 0 29 0 2 0 2
1991 1132 29 11 157 204 335 216 64 46 26 21 20 3 39 1 0 13 21 0 1 1 0 0 0 2 0
1992 1297 15 29 55 53 137 399 213 115 81 34 146 20 39 0 0 5 0 0 1 0 3 0 4 26 0
1993 1173 17 34 48 85 177 313 242 112 65 55 19 6 33 0 3 5 10 2 1 0 6 2 4 0 0
1994 1082 13 9 58 205 161 234 155 120 30 51 42 4 69 0 0 40 12 0 3 3 4 0 0 7 0In: Statistics and Probability
Digital Organics (DO) has the opportunity to invest $1.13 million now (t = 0) and expects after-tax returns of $710,000 in t = 1 and $810,000 in t = 2. The project will last for two years only. The appropriate cost of capital is 13% with all-equity financing, the borrowing rate is 9%, and DO will borrow $290,000 against the project. This debt must be repaid in two equal installments of $145,000 each. Assume debt tax shields have a net value of $.40 per dollar of interest paid.
Calculate the project’s APV. (Enter your answer in dollars, not millions of dollars. Do not round intermediate calculations. Round your answer to the nearest whole number.)
Adjusted present value $
In: Finance
C++ Please
Two sample runs of this program are given below:
Sample Run 1:
Enter a sequence of characters and enter '#' to terminate the input:
A
B
&
0
3
j
)
9
x
#
All digits were entered in ascending order.
Sample Run 2:
Enter a sequence of characters and enter '#' to terminate the input:
A
B
&
0
3
j
)
2
x
#
Digits were not entered in ascending order.
Requirements:
California College
In: Computer Science