If you were on the recruiting team to find a new
CEO for a company where the board mandate was to focus on embedding
innovation into the DNA of the company, what attributes would you
describe as being the "must-haves?"
In: Psychology
Data on the fuel economy of several 2010 model vehicles are given in the accompanying table. Complete parts (a) and (b) below.
|
Car |
mpg |
|
|---|---|---|
|
1 |
29 |
|
|
2 |
35 |
|
|
3 |
35 |
|
|
4 |
28 |
|
|
5 |
38 |
|
|
6 |
32 |
|
|
7 |
22 |
|
|
8 |
27 |
|
|
9 |
31 |
|
|
10 |
32 |
|
|
11 |
28 |
|
|
12 |
36 |
|
|
13 |
24 |
|
|
14 |
25 |
|
|
15 |
27 |
a) Find and interpret a 95% confidence interval for the gas mileage of 2010 vehicles. Select the correct choice below and fill in the answer boxes within your choice.
(Round to two decimal places as needed. Use ascending order.)
A.One is 95% confident that the true mean gas mileage for cars like the ones in the sample is between __ mpg and ___mpg.
B.The true mean gas mileage for cars like the ones in the sample is between ___mpg and ___mpg 95% of the time.
C.95% of all cars like the ones in the sample have gas mileages between ___mpg and ___ mpg
D.One is 95% confident that the gas mileage of a randomly selected car like the ones in the sample is between ___ mpg and ___ mpg
b) Does this confidence interval capture the mean gas mileage for all 2010 vehicles? Choose the correct answer below.
A.There is a 95% chance that this interval contains the true mean gas mileage for all 2010 vehicles.
B.Because the sample size is more than 10% of the population, the inferences drawn from the confidence interval are not valid.
C.Without knowing how the data were selected, one must be cautious about generalizing to all 2010 cars.
D.Assuming the population of 2010 gas mileages follows a Normal model, this confidence interval definitely captures the true mean.
In: Statistics and Probability
Daw a graph.
The US has 1% annual inflation and 10% unemployment. Apply Fiscal Policies.
Show the application of the policies on the following, in this order:
Production Possibilities Curve (before = the situation, after = policies applied)
Aggregate Model (before = the situation, after = policies applied)
Money Market (as the policies are applied)
Loanable Funds (as the policies are applied)
Investment Demand (as the policies are applied)
In: Economics
Calculate the change in pH to 0.01 pH units caused by adding 10. mL of 3.69-M NaOH is added to 530. mL of each of the following solutions.
a.) water
pH before mixing: 7.00 (correct)
pH after mixing: ??
b.) 0.180 M NH3
pH before mixing: 11.26
pH after mixing: ??
Thank you! Sincerely, a confused college student
In: Chemistry
The adjusted trial balance for Pharoah Company is given
below.
|
Pharoah Company |
||||||||
|---|---|---|---|---|---|---|---|---|
|
Before |
After |
|||||||
|
Dr. |
Cr. |
Dr. |
Cr. |
|||||
|
Cash |
$10,200 | $10,200 | ||||||
|
Accounts Receivable |
8,900 | 9,900 | ||||||
|
Supplies |
2,300 | 600 | ||||||
|
Prepaid Insurance |
3,800 | 2,700 | ||||||
|
Equipment |
13,500 | 13,500 | ||||||
|
Accumulated Depreciation-Equipment |
$ 3,700 | $ 4,500 | ||||||
|
Accounts Payable |
5,800 | 5,800 | ||||||
|
Salaries and Wages Payable |
0 | 1,400 | ||||||
|
Unearned Rent Revenue |
1,400 | 800 | ||||||
|
Common Stock |
11,200 | 11,200 | ||||||
|
Retained Earnings |
3,600 | 3,600 | ||||||
|
Service Revenue |
33,900 | 34,900 | ||||||
|
Rent Revenue |
11,100 | 11,700 | ||||||
|
Salaries and Wages Expense |
16,800 | 18,200 | ||||||
|
Supplies Expense |
0 | 1,700 | ||||||
|
Rent Expense |
15,200 | 15,200 | ||||||
|
Insurance Expense |
0 | 1,100 | ||||||
|
Depreciation Expense |
0 | 800 | ||||||
| $70,700 | $70,700 | $73,900 |
$73,900 |
|||||
Prepare the retained earnings statement for the year, prepare the income statement for the year, prepare the balance sheet at August 31.
In: Accounting
After a catastrophic failure of your injection mold die, the production team has rebuilt the equipment and production is running smoothly again. However, management wants to be sure the quality after the repairs is the same as before. Taking it on faith that σ = 0.030 grams before the failure, you conduct a quick experiment on a batch produced after the failure, and you measure s = 0.036 grams from a random sample of 25 O-rings.
a) Based on this experiment, can you conclude the injection mold process is exhibiting the same variance before and after the repair? Show all of your work
b) The management brings in another production batch, produced before the failure, and wants you to compare the variances of this batch with the batch from part (a). You collect 30 random O-rings from this batch and measure the sample standard deviation, s. Assuming a 2-sided alternative, what is the lowest value of s you could measure and still be able to conclude the two batches have identical variances? Show all of your work.
In: Statistics and Probability
Claim: “Golfers who had one lesson with this instructor had an
average increase of more than 15 yards in the distance of their
drives.”
A random sample of 5 golfers who had attended a free trial lesson
with this golf instructor was selected. Before the lesson, each of
these golfers hit several drives from a tee, and the average
distance for each golfer was recorded (in yards). This process was
repeated after the lesson. Assume that the differences between the
“before” and “after” distances are approximately normally
distributed. Test the claim at the 0.1 significance level.
Golfer Aaron Buddy Chloe
David Eric
Dist Before Lesson 201.0 195.1 186.4 236.5
250.4
Dist After Lesson 224.7 208.6 200.6 264.3
261.9
A.) Identify the correct HYPOTHESES
B.) Identify the value of the TEST STATISTIC
C.) Identify the value of the CRITICAL VALUE(S)
D.) Identify the P-VALUE
E.) Identify the CONCLUSION
***THE CHART DIDN'T COME OUT RIGHT. EACH COLUMN SHOULD BE ONE GOLFER WITH A DISTANCE BEFORE AND AFTER THE LESSON UNDER EACH***
In: Statistics and Probability
Back for more O-rings! After a catastrophic failure of your
injection mold die, the production team has rebuilt the equipment
and production is running smoothly again. However, management wants
to be sure the quality after the repairs is the same as before.
Taking it on faith that σ = 0.030 grams before the failure, you
conduct a quick experiment on a batch produced after the failure,
and you measure s = 0.036 grams from a random sample of 25
O-rings.
a) Based on this experiment, can you conclude the injection mold
process is exhibiting the same variance before and after the
repair? Show all of your work
b) The management brings in another production batch, produced
before the failure, and wants you to compare the variances of this
batch with the batch from part (a). You collect 30 random O-rings
from this batch and measure the sample standard deviation, s.
Assuming a 2-sided alternative, what is the lowest value of s you
could measure and still be able to conclude the two batches have
identical variances? Show all of your work.
In: Statistics and Probability
6. Paired annual rates of return data are collected from 8 randomly selected investment funds before and after The Federal Reserve cuts down interest rates. The dataset and relevant summery results are given in the table below. Suppose you are a financial analyst interested in finding out whether investment funds’ mean rate of return is significantly different before and after the interest rate adjustment.
|
Fund |
Before (%) |
After (%) |
After-Before (%) |
|
1 |
3.51 |
4.62 |
1.11 |
|
2 |
4.25 |
4.31 |
0.06 |
|
3 |
1.76 |
1.52 |
-0.24 |
|
4 |
2.68 |
2.69 |
0.01 |
|
5 |
3.19 |
3.77 |
0.58 |
|
6 |
5.43 |
4.86 |
-0.57 |
|
7 |
2.18 |
3.69 |
1.51 |
|
8 |
6.72 |
7.98 |
1.26 |
|
Average= |
3.72 |
4.18 |
0.47 |
|
Standard Deviation= |
1.68 |
1.88 |
0.76 |
The ALTURNATIVE hypothesis of this test is ________________________________________.
The significance level for this test should be chosen to be _______________________.
The numerical formula calculating test statistic is __________________________________________.
The test statistic is calculated to be_________________________.
The p-value is ___________________________.
Based on the p-value we _________________, (accept or reject H0)
In: Math
Business Issues (a) Fixed and variable costs The cost of
assembling a computer requires $300 worth of parts, 2 hr of direct
labour at $35/hr and incurs an overhead cost of 400% of labour. If
your MARR was 35% per computer, what is the minimum price you would
accept for the computer?
(b) List the “five forces” in Michael Porter’s “Five Forces Model”
for describing the dynamics of competition.
(c) Convert the following poor objective into a S.M.A.R.T.
Objective. “My Team wants to establish a company in
Singapore”
(d) List at least four (4) types of Intellectual property.
(e) What is the difference between an invention and an
innovation?
(f) Name the three (3) main characteristics of a disruptive
innovation.
In: Economics