Questions
4. The next question has to do with the condensation of water a. When water condenses...

4. The next question has to do with the condensation of water a. When water condenses on your glass, does it cool or warm the drink? b. If a can of soda at 1.0 °C has 6.512 grams of water condense on the outside, how much energy was transferred? The heat of condensation of water is 2.26kJ/g. c. If all the energy came from the soda, and the soda has the same heat capacity as water, what is the final temperature of the soda in °F?

5. A 5.69 g sample of copper metal was heated in boiling water to 99.8°C. Then it was dropped into a beaker containing 100.0 g of H2O at 22.6°C. Assuming the water gained all the heat lost by the copper, what is the final temperature of the H2O and Cu? The specific heat of water is CP=4.184 J/g∙°C and the specific heat of copper is CP,Cu=0.386 J/g∙°C

In: Other

1. Fireflies emit light across the visible spectrum, but the peak intensity of their emission is...

1. Fireflies emit light across the visible spectrum, but the peak intensity of their emission is around a wavelength of 550 nm. So let’s make the approximation that all of the light emitted by a firefly has a wavelength of 550 nm. (a) A typical flash of light from a firefly lasts for about 100 ms and has a power of 1.2 mW. How many photons are emitted in each flash. (b) An “electron volt” (eV) is a unit of energy. It is the energy that an electron gains when it “falls through” a potential difference of 1.0 V. What is an electron volt, in Joules. (c) Energy is stored in a firefly’s body (just like in your body) in ATP molecules. The amount of energy provided by metabolizing one ATP molecule is 0.30 eV. How many ATP molecules does the firefly need to metabolize to emit one photon

In: Physics

15- Propane gas flows into a combustion chamber at a rate 250 L/min at 2.0 atmand...

15- Propane gas flows into a combustion chamber at a rate 250 L/min at 2.0 atmand ambient temperature. Air is added to the chamber at 1.0 atm and the same temperature. The gases are ignited.

a) To get complete combustion of the propane to carbon dioxide and water three times as much oxygen as is stoichiometrically appropriate is required. Assuming air is 21% oxygen and 79% nitrogen, calculate the required flow rate of air?

b )Under the conditions in part a, the combustion is not complete and a mixture of carbon dioxide and carbon monoxide is produced. It is determined that 94.0% of the carbon in the exhaust gas is present as carbon dioxide. The remainder is carbon monoxide. Calculate the percent composition of the exhaust gas in terms of mole fraction of CO, CO2 , O2 , N2 , and H2O. Assume the propane is completely reacted and the nitrogen is totally unreacted.

Can you please explain part B? I got 476.190 mL/min for part A.

In: Chemistry

suppose a woman wants to estimate her exact day of ovulation for contraceptive purposes. A theory...

suppose a woman wants to estimate her exact day of ovulation for contraceptive purposes. A theory exists that at the time of ovulation the body temperature rises 0.5 to 1.0 degrees F thus, changes in body temperature can be used to goes the day of ovulation.

suppose that for this purpose a woman measures her body temperature on awakening on the first 10 days after menstruation and obtains the following data: 95.8, 96.5, 97.4, 97.4, 97.3, 96.0, 97.1, 97.3, 96.2, 97.3.

A. what is the best point estimate of her underlying basal body temperature (population mean)

b. how precise is this estimate (calculate the standard error of the estimate)?

c. compute a 95% confidence interval for the underlying mean basal body temperature using the data. assume that her underlying mean basal body temperature has a normal distribution

In: Math

Write a program that determines the probability of tossing a coin 10 times and getting exactly...

Write a program that determines the probability of tossing a coin 10 times and getting exactly 0, 1, 2, 3, etc. heads. This is the binomial probability distribution. Store the probability in an array. You could get 0 heads or 10 heads or anything inbetween.

Use a for loop. The for loop will go from 0 to 10 inclusive. Use r as the number of successes. So r will go from 0 to 10. The probability of a success is .5, and also the probability of a failure is .5.

Print out in table form, column 1=r; goes 0 to 10, and then column 2; the probability of r.

Use 4 decimal places for the probability. You know if you get the correct answers because The sum of all the probabilities is 1.0, and all probabilities are in the range of 0 to 1 inclusive.

In C++, prefer visual studios but not required.

In: Computer Science

Nitrosyl bromide (NOBr) can be obtained as a pure liquid at low temperatures. The liquid boils...

Nitrosyl bromide (NOBr) can be obtained as a pure liquid at low temperatures. The liquid boils at –2°C, and at room temperature the gas partially decomposes, as shown below. 2 NOBr(g) Á 2 NO(g) + Br2(g) A 2.00-g sample of cold liquid NOBr is injected into a 1.0 L flask. (Assume that the flask was first evacuated so that it does not contain any air or other gases.) When the flask is allowed to come to equilibrium at 298 K, the total pressure inside is measured as 0.624 atm. (5 pts) (a). Calculate the total number of moles of gas present in the flask at equilibrium. (This part should be easy!) (b). Now find the numerical value of Keq for the reaction above at 298 K. (HINT: Set up the usual equilibrium table, and then try to relate the final concentrations to the total number of moles you found in part

In: Chemistry

Consider the following two investors’ portfolios consisting of investments in four stocks: Stock Beta Jack's Portfolio...

Consider the following two investors’ portfolios consisting of investments in four stocks:
Stock Beta Jack's Portfolio Nelson's Portfolio
A 1.3 $2,500 $10,000
B 1.0 $2,500 $5,000
C 0.8 $2,500 $5,000
D -0.5 $2,500 $2,500
Portfolio Expected Return 10% 9%
(a)
Calculate the beta on portfolios of Jack and Nelson respectively.

(b) Assuming that the risk-free rate is 4% and the expected return on the
market is 12%, determine the required return on portfolios of Jack and
Nelson respectively.

(c) From your answers in part (b), explain whether portfolios of Jack and
Nelson are over-priced, under-priced or correctly priced.

(d) State and explain whether the following statement is true or false:
“If a security lies above the security market line (SML), then it must be
over-priced.” (word limit: 150 words)

In: Finance

C++ When an object is falling because of gravity, the following formula can be used to...

C++ When an object is falling because of gravity, the following formula can be used to determine the distance that object falls in a specific time period: d = 1/2 g t*t The variables in the formula are as follows: d is the distance in meters g is 9.8 t is the amount of time, in seconds that the object has been falling. Design a function called fallingDistance() that accepts an object's falling time (in seconds) as an argument. The function should return the distance, in meters, that the object has fallen during that time interval. Design a program that calls the function in a loop that passes the values 1 through 10 as arguments and displays the return value. 5 Falling Distance (5 points) Seconds Meters 1.0 4.9 2.0 19.6 3.0 44.1 4.0 78.4 5.0 122.5 6.0 176.4 7.0 240.10000000000002 8.0 313.6 9.0 396.90000000000003 10.0 490.0

In: Computer Science

Refer to the Lincolnville School District bus data. 1. Refer to the maintenance cost variable. The...

Refer to the Lincolnville School District bus data.

1. Refer to the maintenance cost variable. The mean maintenance cost for last year is $4,552 with a standard deviation of $2,332. Estimate the number of buses with a maintenace cost of more than $6,000. Compare that with the actual number. Create a frequency distribution of maintenance cost. Is the distribution normally distributed?

2. Refer to the variable on the number of miles driven since the lastm maintenance. The mean is 11,121 and the standard deviation is 617 miles. Estimate the number of buses traveling more than 11,500 miles since the last maintnance. Compare that number with the actual value. Create a frequency distribution of miles since maintenance cost. Is the distribution normally distributed?

ID Manufacturer Engine Type Engine Type (0=diesel) Capacity Maintenance cost Age Odometer Miles Miles
10 Keiser Gasoline 1 14 4646 5 54375 11973
396 Thompson Diesel 0 14 1072 2 21858 11969
122 Bluebird Gasoline 1 55 9394 10 116580 11967
751 Keiser Diesel 0 14 1078 2 22444 11948
279 Bluebird Diesel 0 55 1008 2 22672 11925
500 Bluebird Gasoline 1 55 5329 5 50765 11922
520 Bluebird Diesel 0 55 4794 10 119130 11896
759 Keiser Diesel 0 55 3952 8 87872 11883
714 Bluebird Diesel 0 42 3742 7 73703 11837
875 Bluebird Diesel 0 55 4376 9 97947 11814
600 Bluebird Diesel 0 55 4832 10 119860 11800
953 Bluebird Diesel 0 55 5160 10 117700 11798
101 Bluebird Diesel 0 55 1955 4 41096 11789
358 Bluebird Diesel 0 55 2775 6 70086 11782
29 Bluebird Gasoline 1 55 5352 6 69438 11781
365 Keiser Diesel 0 55 3065 6 63384 11778
162 Keiser Gasoline 1 55 3143 3 31266 11758
686 Bluebird Diesel 0 55 1569 3 34674 11757
370 Keiser Gasoline 1 55 7766 8 86528 11707
887 Bluebird Diesel 0 55 3743 8 93672 11704
464 Bluebird Gasoline 1 55 2540 3 34530 11698
948 Keiser Diesel 0 42 4342 9 97956 11691
678 Keiser Diesel 0 55 3361 7 75229 11668
481 Keiser Gasoline 1 6 3097 3 34362 11662
43 Bluebird Gasoline 1 55 8263 9 102969 11615
704 Bluebird Diesel 0 55 4218 8 83424 11610
814 Bluebird Diesel 0 55 2028 4 40824 11576
39 Bluebird Gasoline re 55 5821 6 69444 11533
699 Bluebird Gasoline 1 55 9069 9 98307 11518
75 Bluebird Diesel 0 55 3011 6 71970 11462
693 Keiser Gasoline 1 55 9193 9 101889 11461
989 Keiser Diesel 0 55 4795 9 106605 11418
982 Bluebird Diesel 0 55 505 1 10276 11359
321 Bluebird Diesel 0 42 2732 6 70122 11358
724 Keiser Diesel 0 42 3754 8 91968 11344
732 Keiser Diesel 0 42 4640 9 101196 11342
880 Keiser Gasoline 1 55 8410 9 97065 11336
193 Thompson Diesel 0 14 5922 11 128711 11248
884 Bluebird Diesel 0 55 4364 9 92457 11231
57 Bluebird Diesel 0 55 3190 7 79240 11222
731 Bluebird Diesel 0 42 3213 6 68526 11168
61 Keiser Diesel 0 55 4139 9 103536 11148
135 Bluebird Diesel 0 55 3560 7 76426 11127
833 Thompson Diesel 0 14 3920 8 90968 11112
671 Thompson Gasoline 1 14 6733 8 89792 11100
692 Bluebird Diesel 0 55 3770 8 93248 11048
200 Bluebird Diesel 0 55 5168 10 103700 11018
754 Keiser Diesel 0 14 7380 14 146860 11003
540 Bluebird Gasoline 1 55 3656 4 45284 10945
660 Bluebird Gasoline 1 55 6213 6 64434 10911
353 Keiser Gasoline 1 55 4279 4 45744 10902
482 Bluebird Gasoline 1 55 10575 10 116534 10802
398 Thompson Diesel 0 6 4752 9 95922 10802
984 Bluebird Diesel 0 55 3809 8 87664 10760
977 Bluebird Diesel 0 55 3769 7 79422 10759
705 Keiser Diesel 0 42 2152 4 47596 10755
767 Keiser Diesel 0 55 2985 6 71538 10726
326 Bluebird Diesel 0 55 4563 9 107343 10724
120 Keiser Diesel 0 42 4723 10 110320 10674
554 Bluebird Diesel 0 42 1826 4 44604 10662
695 Bluebird Diesel 0 55 1061 2 23152 10633
9 Keiser Gasoline 1 55 3527 4 46848 10591
861 Bluebird Gasoline 1 55 9669 10 106040 10551
603 Keiser Diesel 0 14 2116 4 44384 10518
156 Thompson Diesel 0 14 6212 12 140460 10473
427 Keiser Gasoline 1 55 6927 7 73423 10355
883 Bluebird Gasoline 1 55 1881 2 20742 10344
168 Thompson Gasoline 1 14 7004 7 83006 10315
954 Bluebird Diesel 0 42 5284 10 101000 10235
768 Bluebird Diesel 0 42 3173 7 71778 10227
490 Bluebird Gasoline 1 55 10133 10 106240 10210
725 Bluebird Diesel 0 55 2356 5 57065 10209
45 Keiser Diesel 0 55 3124 6 60102 10167
38 Keiser Gasoline 1 14 5976 6 61662 10140
314 Thompson Diesel 0 6 5408 11 128117 10128
507 Bluebird Diesel 0 55 3690 7 72849 10095
40 Bluebird Gasoline 1 55 9573 10 118470 10081
918 Bluebird Diesel 0 55 2470 5 53620 10075
387 Bluebird Gasoline 1 55 6863 8 89960 10055
418 Bluebird Diesel 0 55 4513 9 104715 10000

In: Statistics and Probability

Consider the natural log transformation (“ln” transformation) of variables labour cost (L_COST), and total number of...

Consider the natural log transformation (“ln” transformation) of variables labour cost (L_COST), and total number of rooms per hotel (Total_Rooms). 4.1 Use the least squares method to estimate the regression coefficients b0 and b1 for the log-linear model 4.2 State the regression equation 4.3 Give the interpretation of the regression coefficient b1. 4.4 Give an interpretation of the coefficient of determination R2 . Also, test the significance of your model using the F-test. How, does the value of the coefficient of determination affect the outcome of the above test? 4.5 Test whether a 1% increase of the total number of rooms per hotel can increase the labour cost by more than 0.20%? Use the 5% level of significance for this test.


L_COST   Total_Rooms     
2.165.000   412     
2.214.985   313     
1.393.550   265     
2.460.634   204     
1.151.600   172     
801.469   133     
1.072.000   127     
1.608.013   322     
793.009   241     
1.383.854   172     
494.566   121     
437.684   70     
83.000   65     
626.000   93     
37.735   75     
256.658   69     
230.000   66     
200.000   54     
199.000   68     
11.720   57     
59.200   38     
130.000   27     
255.020   47     
3.500   32     
20.906   27     
284.569   48     
107.447   39     
64.702   35     
6.500   23     
156.316   25     
15.950   10     
722.069   18     
6.121   17     
30.000   29     
5.700   21     
50.237   23     
19.670   15     
7.888   8     
3.500   15     
112.181   18     
30.000   10     
3.575   26     
2.074.000   306     
1.312.601   240     
434.237   330     
495.000   139     
1.511.457   353     
1.800.000   324     
2.050.000   276     
623.117   221     
796.026   200     
360.000   117     
538.848   170     
568.536   122     
300.000   57     
249.205   62     
150.000   98     
220.000   75     
50.302   62     
517.729   50     
51.000   27     
75.704   44     
271.724   33     
118.049   25     
40.000   30     
10.000   10     
10.000   18     
70.000   73     
12.000   21     
20.000   22     
36.277   25     
36.277   25     
10.450   31     
14.300   16     
4.296   15     
379.498   16     
1.520   22     
45.000   12     
96.619   34     
270.000   37     
60.000   25     
12.500   10     
1.934.820   270     
3.000.000   261     
1.675.995   219     
903.000   280     
2.429.367   378     
1.143.850   181     
900.000   166     
600.000   119     
2.500.000   174     
1.103.939   124     
363.825   112     
1.538.000   227     
1.370.968   161     
1.339.903   216     
173.481   102     
210.000   96     
441.737   97     
96.000   56     
177.833   72     
252.390   62     
377.182   78     
111.000   74     
238.000   33     
45.000   30     
50.000   39     
40.000   32     
61.766   25     
166.903   41     
116.056   24     
41.000   49     
195.821   43     
96.713   20     
6.500   32     
5.500   14     
4.000   14     
15.000   13     
9.500   13     
48.200   53     
3.000   11     
27.084   16     
30.000   21     
20.000   21     
43.549   46     
10.000   21     

In: Statistics and Probability